mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-15 22:19:38 +00:00
[feature] add gptq for inference (#4754)
* [gptq] add gptq kernel (#4416) * add gptq * refactor code * fix tests * replace auto-gptq * rname inferance/quant * refactor test * add auto-gptq as an option * reset requirements * change assert and check auto-gptq * add import warnings * change test flash attn version * remove example * change requirements of flash_attn * modify tests * [skip ci] change requirements-test * [gptq] faster gptq cuda kernel (#4494) * [skip ci] add cuda kernels * add license * [skip ci] fix max_input_len * format files & change test size * [skip ci] * [gptq] add gptq tensor parallel (#4538) * add gptq tensor parallel * add gptq tp * delete print * add test gptq check * add test auto gptq check * [gptq] combine gptq and kv cache manager (#4706) * combine gptq and kv cache manager * add init bits * delete useless code * add model path * delete usless print and update test * delete usless import * move option gptq to shard config * change replace linear to shardformer * update bloom policy * delete useless code * fix import bug and delete uselss code * change colossalai/gptq to colossalai/quant/gptq * update import linear for tests * delete useless code and mv gptq_kernel to kernel directory * fix triton kernel * add triton import
This commit is contained in:
541
colossalai/kernel/triton/gptq_triton.py
Normal file
541
colossalai/kernel/triton/gptq_triton.py
Normal file
@@ -0,0 +1,541 @@
|
||||
# Adapted from AutoGPTQ auto_gptq: https://github.com/PanQiWei/AutoGPTQ
|
||||
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
from auto_gptq.nn_modules.triton_utils import custom_autotune
|
||||
|
||||
|
||||
@triton.jit
|
||||
def tanh(x):
|
||||
# Tanh is just a scaled sigmoid
|
||||
return 2 * tl.sigmoid(2 * x) - 1
|
||||
|
||||
|
||||
@triton.jit
|
||||
def cosh(x):
|
||||
exp_x = tl.exp(x)
|
||||
return (exp_x + 1.0 / exp_x) * 0.5
|
||||
|
||||
|
||||
# a Triton implementation of the most used activations
|
||||
# See for instance http://arxiv.org/abs/1606.08415 for an overview
|
||||
|
||||
|
||||
# ReLU
|
||||
@triton.jit
|
||||
def relu(x):
|
||||
"""
|
||||
ReLU_ activation function
|
||||
|
||||
.. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
|
||||
"""
|
||||
return tl.where(x >= 0, x, 0.0)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def squared_relu(x):
|
||||
"""
|
||||
Squared ReLU activation, as proposed in the Primer_ paper.
|
||||
|
||||
.. _Primer: https://arxiv.org/abs/2109.08668
|
||||
"""
|
||||
x_sq = x * x
|
||||
return tl.where(x > 0.0, x_sq, 0.0)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def star_relu(x):
|
||||
"""
|
||||
Star ReLU activation, as proposed in the "MetaFormer Baselines for Vision"_ paper.
|
||||
|
||||
.. _ "MetaFormer Baselines for Vision": https://arxiv.org/pdf/2210.13452.pdf
|
||||
"""
|
||||
x_sq = x * x
|
||||
return 0.8944 * tl.where(x > 0.0, x_sq, 0.0) - 0.4472
|
||||
|
||||
|
||||
# Leaky ReLU
|
||||
@triton.jit
|
||||
def leaky_relu(x):
|
||||
"""
|
||||
LeakyReLU_ activation
|
||||
|
||||
.. _LeakyReLU: https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
|
||||
"""
|
||||
return tl.where(x >= 0.0, x, 0.01 * x)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def gelu(x):
|
||||
"""
|
||||
GeLU_ activation - Gaussian error linear unit
|
||||
|
||||
.. _GeLU: https://arxiv.org/pdf/1606.08415.pdf
|
||||
"""
|
||||
return 0.5 * x * (1 + tanh(_kAlpha * (x + 0.044715 * x * x * x)))
|
||||
|
||||
|
||||
@triton.jit
|
||||
def smelu(x):
|
||||
"""
|
||||
SmeLU_ activation - Smooth ReLU with beta=2.0
|
||||
|
||||
.. _SmeLU: https://arxiv.org/pdf/2202.06499.pdf
|
||||
"""
|
||||
beta = 2.0
|
||||
|
||||
relu = tl.where(x >= beta, x, 0.0)
|
||||
return tl.where(tl.abs(x) <= beta, (x + beta) * (x + beta) / (4.0 * beta), relu)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def silu(x):
|
||||
return x * tl.sigmoid(x)
|
||||
|
||||
|
||||
@custom_autotune.autotune(
|
||||
configs=[
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=2, num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 8}, num_stages=3, num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 8}, num_stages=2, num_warps=4
|
||||
),
|
||||
],
|
||||
key=["M", "N", "K"],
|
||||
nearest_power_of_two=True,
|
||||
prune_configs_by={
|
||||
"early_config_prune": custom_autotune.matmul248_kernel_config_pruner,
|
||||
"perf_model": None,
|
||||
"top_k": None,
|
||||
},
|
||||
)
|
||||
@triton.jit
|
||||
def cai_gptq_matmul_248_kernel(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
c_ptr,
|
||||
scales_ptr,
|
||||
zeros_ptr,
|
||||
bias_ptr,
|
||||
residual_ptr,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
maxq,
|
||||
gptq_group_size,
|
||||
stride_am,
|
||||
stride_ak,
|
||||
stride_bk,
|
||||
stride_bn,
|
||||
stride_cm,
|
||||
stride_cn,
|
||||
stride_scales,
|
||||
stride_zeros,
|
||||
QKV_FUSED: tl.constexpr,
|
||||
ADD_BIAS: tl.constexpr,
|
||||
ADD_RESIDUAL: tl.constexpr,
|
||||
ACT_TYPE: tl.constexpr,
|
||||
BLOCK_SIZE_M: tl.constexpr,
|
||||
BLOCK_SIZE_N: tl.constexpr,
|
||||
BLOCK_SIZE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr,
|
||||
):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, K) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, N) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
NK = K
|
||||
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_k = tl.cdiv(NK, BLOCK_SIZE_K)
|
||||
qkv_offset = pid // (num_pid_m * num_pid_n)
|
||||
pid = pid % (num_pid_m * num_pid_n)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_n = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||
# offs_bk = offs_k + qkv_offset * NK
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
|
||||
a_mask = offs_am[:, None] < M
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = (
|
||||
b_ptr
|
||||
+ qkv_offset * N * NK // infearure_per_bits
|
||||
+ ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)
|
||||
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
# g_ptrs = g_ptr + offs_k
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + qkv_offset * NK * N // gptq_group_size + offs_bn[None, :]
|
||||
zeros_ptrs = (
|
||||
zeros_ptr
|
||||
+ qkv_offset * NK * N // gptq_group_size // infearure_per_bits
|
||||
+ (offs_bn[None, :] // infearure_per_bits)
|
||||
)
|
||||
|
||||
shifter = (offs_k % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||
g_idx_base = tl.arange(0, BLOCK_SIZE_K)
|
||||
g_idx_base = g_idx_base // gptq_group_size
|
||||
g_idx = g_idx_base
|
||||
# tl.device_print("gidx, ", g_idx)
|
||||
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = zeros + 1
|
||||
|
||||
for k in range(0, num_pid_k):
|
||||
# g_idx = tl.load(g_ptrs)
|
||||
# if (k + 1) * BLOCK_SIZE_K > currend_group_end:
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = zeros + 1
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros).to(tl.float16) * scales # Scale and shift
|
||||
accumulator += tl.dot(a, b)
|
||||
|
||||
a_ptrs += BLOCK_SIZE_K
|
||||
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
||||
g_idx = g_idx_base + ((k + 1) * BLOCK_SIZE_K) // gptq_group_size
|
||||
# if (k + 2) * BLOCK_SIZE_K > currend_group_end:
|
||||
|
||||
c_ptrs = c_ptr + qkv_offset * M * N + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
||||
|
||||
if ADD_BIAS:
|
||||
bias_mask = offs_bn < N
|
||||
offs_bn += qkv_offset * N
|
||||
bias_ptrs = bias_ptr + stride_cn * offs_bn
|
||||
bias = tl.load(bias_ptrs, mask=bias_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
accumulator += bias[None, :]
|
||||
|
||||
if ACT_TYPE == 1:
|
||||
accumulator = relu(accumulator)
|
||||
elif ACT_TYPE == 2:
|
||||
accumulator = gelu(accumulator)
|
||||
elif ACT_TYPE == 3:
|
||||
accumulator = silu(accumulator)
|
||||
|
||||
if ADD_RESIDUAL:
|
||||
residual_ptrs = residual_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
res = tl.load(residual_ptrs, mask=c_mask, other=0.0)
|
||||
accumulator += res
|
||||
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
|
||||
|
||||
@custom_autotune.autotune(
|
||||
configs=[
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=4, num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8}, num_stages=2, num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 8}, num_stages=3, num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 8}, num_stages=2, num_warps=4
|
||||
),
|
||||
],
|
||||
key=["M", "N", "K"],
|
||||
nearest_power_of_two=True,
|
||||
prune_configs_by={
|
||||
"early_config_prune": custom_autotune.matmul248_kernel_config_pruner,
|
||||
"perf_model": None,
|
||||
"top_k": None,
|
||||
},
|
||||
)
|
||||
@triton.jit
|
||||
def cai_gptq_idx_matmul_248_kernel(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
c_ptr,
|
||||
scales_ptr,
|
||||
zeros_ptr,
|
||||
idx_ptr,
|
||||
bias_ptr,
|
||||
residual_ptr,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
maxq,
|
||||
gptq_group_size,
|
||||
stride_am,
|
||||
stride_ak,
|
||||
stride_bk,
|
||||
stride_bn,
|
||||
stride_cm,
|
||||
stride_cn,
|
||||
stride_scales,
|
||||
stride_zeros,
|
||||
QKV_FUSED: tl.constexpr,
|
||||
ADD_BIAS: tl.constexpr,
|
||||
ADD_RESIDUAL: tl.constexpr,
|
||||
ACT_TYPE: tl.constexpr,
|
||||
BLOCK_SIZE_M: tl.constexpr,
|
||||
BLOCK_SIZE_N: tl.constexpr,
|
||||
BLOCK_SIZE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr,
|
||||
):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, K) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, N) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
NK = K
|
||||
|
||||
# if QKV_FUSED:
|
||||
# NK = K//3
|
||||
# else:
|
||||
# NK = K
|
||||
# NK = K
|
||||
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_k = tl.cdiv(NK, BLOCK_SIZE_K)
|
||||
qkv_offset = pid // (num_pid_m * num_pid_n)
|
||||
pid = pid % (num_pid_m * num_pid_n)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_n = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||
# offs_bk = offs_k + qkv_offset * NK
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
|
||||
a_mask = offs_am[:, None] < M
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = (
|
||||
b_ptr
|
||||
+ qkv_offset * N * NK // infearure_per_bits
|
||||
+ ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)
|
||||
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
# g_ptrs = g_ptr + offs_k
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + qkv_offset * NK * N // gptq_group_size + offs_bn[None, :]
|
||||
zeros_ptrs = (
|
||||
zeros_ptr
|
||||
+ qkv_offset * NK * N // gptq_group_size // infearure_per_bits
|
||||
+ (offs_bn[None, :] // infearure_per_bits)
|
||||
)
|
||||
|
||||
shifter = (offs_k % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||
g_ptrs = idx_ptr + offs_k
|
||||
g_idx = tl.load(g_ptrs)
|
||||
# tl.device_print("gidx, ", g_idx)
|
||||
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
|
||||
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
for k in range(0, num_pid_k):
|
||||
g_idx = tl.load(g_ptrs)
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = zeros + 1
|
||||
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros).to(tl.float16) * scales # Scale and shift
|
||||
accumulator += tl.dot(a, b)
|
||||
|
||||
a_ptrs += BLOCK_SIZE_K
|
||||
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
||||
g_ptrs += BLOCK_SIZE_K
|
||||
|
||||
c_ptrs = c_ptr + qkv_offset * M * N + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
||||
|
||||
if ADD_BIAS:
|
||||
bias_mask = offs_bn < N
|
||||
offs_bn += qkv_offset * N
|
||||
bias_ptrs = bias_ptr + stride_cn * offs_bn
|
||||
bias = tl.load(bias_ptrs, mask=bias_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
accumulator += bias[None, :]
|
||||
|
||||
if ACT_TYPE == 1:
|
||||
accumulator = relu(accumulator)
|
||||
elif ACT_TYPE == 2:
|
||||
accumulator = gelu(accumulator)
|
||||
elif ACT_TYPE == 3:
|
||||
accumulator = silu(accumulator)
|
||||
|
||||
if ADD_RESIDUAL:
|
||||
residual_ptrs = residual_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
res = tl.load(residual_ptrs, mask=c_mask, other=0.0)
|
||||
accumulator += res
|
||||
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
|
||||
|
||||
def gptq_fused_linear_triton(
|
||||
input,
|
||||
qweight,
|
||||
scales,
|
||||
qzeros,
|
||||
bias,
|
||||
residual,
|
||||
bits,
|
||||
maxq,
|
||||
gptq_group_size,
|
||||
qkv_fused,
|
||||
add_bias,
|
||||
add_residual,
|
||||
g_idx=None,
|
||||
act_type=0,
|
||||
):
|
||||
# print("gptq fused ", qkv_fused, add_bias, add_residual)
|
||||
assert input.is_cuda, "input is not in cuda"
|
||||
assert qweight.is_cuda, "qweight is not in cuda"
|
||||
assert scales.is_cuda, "scales is not in cuda"
|
||||
assert qzeros.is_cuda, "qzeros is not in cuda"
|
||||
|
||||
with torch.cuda.device(input.device):
|
||||
if qkv_fused:
|
||||
grid = lambda META: (
|
||||
triton.cdiv(input.shape[0], META["BLOCK_SIZE_M"])
|
||||
* triton.cdiv(qweight.shape[1], META["BLOCK_SIZE_N"])
|
||||
* 3,
|
||||
)
|
||||
output = torch.empty((input.shape[0] * 3, qweight.shape[1]), device=input.device, dtype=torch.float16)
|
||||
else:
|
||||
grid = lambda META: (
|
||||
triton.cdiv(input.shape[0], META["BLOCK_SIZE_M"]) * triton.cdiv(qweight.shape[1], META["BLOCK_SIZE_N"]),
|
||||
)
|
||||
output = torch.empty((input.shape[0], qweight.shape[1]), device=input.device, dtype=torch.float16)
|
||||
# print("dtype, ", qweight.dtype, output.dtype, scales.dtype, qzeros.dtype, bias.dtype, residual.dtype)
|
||||
if g_idx is None:
|
||||
cai_gptq_matmul_248_kernel[grid](
|
||||
input,
|
||||
qweight,
|
||||
output,
|
||||
scales,
|
||||
qzeros,
|
||||
bias,
|
||||
residual,
|
||||
input.shape[0],
|
||||
qweight.shape[1],
|
||||
input.shape[1],
|
||||
bits,
|
||||
maxq,
|
||||
gptq_group_size,
|
||||
input.stride(0),
|
||||
input.stride(1),
|
||||
qweight.stride(0),
|
||||
qweight.stride(1),
|
||||
output.stride(0),
|
||||
output.stride(1),
|
||||
scales.stride(0),
|
||||
qzeros.stride(0),
|
||||
QKV_FUSED=qkv_fused,
|
||||
ADD_BIAS=add_bias,
|
||||
ADD_RESIDUAL=add_residual,
|
||||
ACT_TYPE=act_type,
|
||||
)
|
||||
else:
|
||||
cai_gptq_idx_matmul_248_kernel[grid](
|
||||
input,
|
||||
qweight,
|
||||
output,
|
||||
scales,
|
||||
qzeros,
|
||||
g_idx,
|
||||
bias,
|
||||
residual,
|
||||
input.shape[0],
|
||||
qweight.shape[1],
|
||||
input.shape[1],
|
||||
bits,
|
||||
maxq,
|
||||
gptq_group_size,
|
||||
input.stride(0),
|
||||
input.stride(1),
|
||||
qweight.stride(0),
|
||||
qweight.stride(1),
|
||||
output.stride(0),
|
||||
output.stride(1),
|
||||
scales.stride(0),
|
||||
qzeros.stride(0),
|
||||
QKV_FUSED=qkv_fused,
|
||||
ADD_BIAS=add_bias,
|
||||
ADD_RESIDUAL=add_residual,
|
||||
ACT_TYPE=act_type,
|
||||
)
|
||||
if qkv_fused:
|
||||
return output.view(3, input.shape[0], qweight.shape[1])
|
||||
else:
|
||||
return output
|
Reference in New Issue
Block a user