precision alignment

This commit is contained in:
yuehuayingxueluo
2024-01-02 18:30:11 +08:00
committed by FrankLeeeee
parent 62968588d1
commit 9489dc64d8
5 changed files with 45 additions and 47 deletions

View File

@@ -67,19 +67,8 @@ def llama_model_forward(
block_tables = batch.get_block_table_tensor()
sequence_lengths = batch.get_sequence_lengths()
seq_length = input_ids.shape[1]
device = input_ids.device
if batch.is_prompts:
past_key_values_length = 0
else:
past_key_values_length = sequence_lengths[0].item() - 1
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
# Here, we generate position_ids through the input tensor, which can align with the output precision of the transformer.
position_ids = generate_padding_position_id(input_ids)
hidden_states = self.embed_tokens(input_ids)
for layer_id, decoder_layer in enumerate(self.layers):
@@ -142,7 +131,7 @@ def llama_attn_forward(
k_cache: torch.Tensor = None,
v_cache: torch.Tensor = None,
is_prompts: bool = True,
sequence_lengths: int = None,
sequence_lengths: torch.Tensor = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
@@ -150,7 +139,9 @@ def llama_attn_forward(
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2] + block_tables.shape[1]
kv_seq_len = key_states.shape[-2]
if not is_prompts:
kv_seq_len = kv_seq_len + sequence_lengths[0].item()
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
@@ -166,10 +157,8 @@ def llama_attn_forward(
key_states = key_states.view(-1, self.num_heads, self.head_dim)
value_states = value_states.view(-1, self.num_heads, self.head_dim)
k_cache.shape[-1]
# TODO: The code below will be uncommented after the development of attention-related kernel is completed.
# memcpy_to_block(key_states, value_states, k_cache, v_cache, block_tables, block_size, sequence_lengths)
# if is_prompts:
# attn_output = context_attention_unpadded(query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, block_size)
# else:
@@ -177,10 +166,16 @@ def llama_attn_forward(
# decoding_attention(query_states, k_cache, v_cache, block_tables, sequence_lengths, attn_output, block_tables.shape[1], block_size)
attn_output = query_states
attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output
def generate_padding_position_id(input_ids: torch.Tensor) -> torch.Tensor:
padding_id = 2
attention_mask = input_ids.ne(padding_id).long()
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
return position_ids