precision alignment

This commit is contained in:
yuehuayingxueluo 2024-01-02 18:30:11 +08:00 committed by FrankLeeeee
parent 62968588d1
commit 9489dc64d8
5 changed files with 45 additions and 47 deletions

View File

@ -230,11 +230,8 @@ class InferenceEngine:
self.request_handler.search_tokens(self.generation_config, logits) self.request_handler.search_tokens(self.generation_config, logits)
finished_sequences = self.request_handler.update() finished_sequences = self.request_handler.update()
print("finished_sequences: ", finished_sequences)
# Decode completed sentences. # Decode completed sentences.
for seq in finished_sequences: for seq in finished_sequences:
print("seq.output_token_id: ", seq.output_token_id)
if seq.prompt: if seq.prompt:
output_str = self.tokenizer.decode(seq.output_token_id, skip_special_tokens=True) output_str = self.tokenizer.decode(seq.output_token_id, skip_special_tokens=True)
output_list.append(seq.prompt + output_str) output_list.append(seq.prompt + output_str)
@ -242,6 +239,4 @@ class InferenceEngine:
output_str = self.tokenizer.decode(seq.input_token_id + seq.output_token_id, skip_special_tokens=True) output_str = self.tokenizer.decode(seq.input_token_id + seq.output_token_id, skip_special_tokens=True)
output_list.append(output_str) output_list.append(output_str)
print("len(output_list): ", len(output_list))
return output_list return output_list

View File

@ -67,19 +67,8 @@ def llama_model_forward(
block_tables = batch.get_block_table_tensor() block_tables = batch.get_block_table_tensor()
sequence_lengths = batch.get_sequence_lengths() sequence_lengths = batch.get_sequence_lengths()
seq_length = input_ids.shape[1] # Here, we generate position_ids through the input tensor, which can align with the output precision of the transformer.
device = input_ids.device position_ids = generate_padding_position_id(input_ids)
if batch.is_prompts:
past_key_values_length = 0
else:
past_key_values_length = sequence_lengths[0].item() - 1
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
hidden_states = self.embed_tokens(input_ids) hidden_states = self.embed_tokens(input_ids)
for layer_id, decoder_layer in enumerate(self.layers): for layer_id, decoder_layer in enumerate(self.layers):
@ -142,7 +131,7 @@ def llama_attn_forward(
k_cache: torch.Tensor = None, k_cache: torch.Tensor = None,
v_cache: torch.Tensor = None, v_cache: torch.Tensor = None,
is_prompts: bool = True, is_prompts: bool = True,
sequence_lengths: int = None, sequence_lengths: torch.Tensor = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size() bsz, q_len, _ = hidden_states.size()
@ -150,7 +139,9 @@ def llama_attn_forward(
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2] + block_tables.shape[1] kv_seq_len = key_states.shape[-2]
if not is_prompts:
kv_seq_len = kv_seq_len + sequence_lengths[0].item()
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
@ -166,10 +157,8 @@ def llama_attn_forward(
key_states = key_states.view(-1, self.num_heads, self.head_dim) key_states = key_states.view(-1, self.num_heads, self.head_dim)
value_states = value_states.view(-1, self.num_heads, self.head_dim) value_states = value_states.view(-1, self.num_heads, self.head_dim)
k_cache.shape[-1] # TODO: The code below will be uncommented after the development of attention-related kernel is completed.
# memcpy_to_block(key_states, value_states, k_cache, v_cache, block_tables, block_size, sequence_lengths) # memcpy_to_block(key_states, value_states, k_cache, v_cache, block_tables, block_size, sequence_lengths)
# if is_prompts: # if is_prompts:
# attn_output = context_attention_unpadded(query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, block_size) # attn_output = context_attention_unpadded(query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, block_size)
# else: # else:
@ -177,10 +166,16 @@ def llama_attn_forward(
# decoding_attention(query_states, k_cache, v_cache, block_tables, sequence_lengths, attn_output, block_tables.shape[1], block_size) # decoding_attention(query_states, k_cache, v_cache, block_tables, sequence_lengths, attn_output, block_tables.shape[1], block_size)
attn_output = query_states attn_output = query_states
attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim) attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output) attn_output = self.o_proj(attn_output)
return attn_output return attn_output
def generate_padding_position_id(input_ids: torch.Tensor) -> torch.Tensor:
padding_id = 2
attention_mask = input_ids.ne(padding_id).long()
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
return position_ids

View File

@ -21,8 +21,8 @@ def multinomial_sample(
""" """
Sample tokens in a random phase. Sample tokens in a random phase.
""" """
max_best_of = generation_config.best_of # max_best_of = generation_config.best_of
random_results = torch.multinomial(probs, num_samples=max_best_of, replacement=True).cpu() random_results = torch.multinomial(probs, num_samples=1, replacement=True).cpu()
return random_results return random_results
@ -44,7 +44,8 @@ def beam_search_sample(
# NOTE: this beam search sample function is wrong now. # NOTE: this beam search sample function is wrong now.
""" """
beam_width = generation_config.best_of # beam_width = generation_config.best_of
beam_width = 1
results = [] results = []
if is_prompt: if is_prompt:
# Prompt phase. # Prompt phase.

View File

@ -308,7 +308,7 @@ class BatchInfo:
input_len_list.append(1) input_len_list.append(1)
return torch.tensor(input_list, dtype=torch.long, device=self.device), torch.tensor( return torch.tensor(input_list, dtype=torch.long, device=self.device), torch.tensor(
input_len_list, dtype=torch.int, device=device input_len_list, dtype=torch.int, device=self.device
) )
def get_sequence_lengths(self): def get_sequence_lengths(self):

View File

@ -1,5 +1,4 @@
import pytest import pytest
import transformers
from transformers import AutoTokenizer, GenerationConfig from transformers import AutoTokenizer, GenerationConfig
import colossalai import colossalai
@ -8,38 +7,46 @@ from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import spawn from colossalai.testing import spawn
def check_inference_engine(): def check_inference_engine(test_cai=False):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
model = transformers.LlamaForCausalLM( model = transformers.LlamaForCausalLM(
transformers.LlamaConfig( transformers.LlamaConfig(
vocab_size=50000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=4 vocab_size=50000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=4
) )
) )
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
inference_config = InferenceConfig(max_output_len=5)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
inputs = [ inputs = [
"介绍一下今天的北京", "介绍一下今天的北京",
"介绍一下武汉", "介绍一下武汉",
] ]
if test_cai:
inference_config = InferenceConfig(max_output_len=1)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
inference_engine.add_request(prompts=inputs) inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting() assert inference_engine.request_handler._has_waiting()
generation_config = GenerationConfig(top_k=2, top_p=0.8, do_sample=True) generation_config = GenerationConfig(top_k=2, top_p=0.8, do_sample=True)
outputs = inference_engine.generate(generation_config) outputs = inference_engine.generate(generation_config)
else:
print("len(outputs): ", len(outputs)) tokenizer.pad_token = tokenizer.eos_token
print("outputs: ", outputs) tokenizer.pad_token_id = tokenizer.eos_token_id
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
# Engine still gets some bug generation_config = GenerationConfig(
top_k=2, top_p=0.8, do_sample=True, pad_token_id=tokenizer.pad_token_id, max_new_tokens=1
# for s1, s2 in zip(inputs, outputs): )
# assert s1 == s2 outputs = model.generate(inputs, generation_config=generation_config)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return outputs
def run_dist(rank, world_size, port): def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost") colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
check_inference_engine() check_inference_engine(True)
check_inference_engine(False)
# TODO: There are some in sampler
# for s1, s2 in zip(cai_outputs, transformer_outputs):
# assert s1 == s2
@pytest.mark.dist @pytest.mark.dist