[moe] initialize MoE groups by ProcessGroup (#1640)

This commit is contained in:
HELSON
2022-09-23 17:20:41 +08:00
committed by GitHub
parent e57df80325
commit 95c35f73bd
2 changed files with 67 additions and 35 deletions

View File

@@ -3,6 +3,7 @@ import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode
from colossalai.context.singleton_meta import SingletonMeta
from colossalai.tensor import ProcessGroup
from typing import Tuple
@@ -22,41 +23,9 @@ class MoeParallelInfo:
_check_sanity()
self.ep_size = ep_size
self.dp_size = dp_size
self.ep_group = None
# data parallel group for experts, since ep_group is different
# we may have different dp_group from get_group(ParallelMode.DATA)
self.dp_group = None
# Here we assume tensor parallel size = 1
# Otherwise, MoE can't be used
# Since TENSOR parallel group and DATA parallel group
# have been created, we can use them directly.
if ep_size == 1:
from colossalai.core import global_context as gpc
self.ep_group = gpc.get_group(ParallelMode.TENSOR)
self.dp_group = gpc.get_group(ParallelMode.DATA)
return
if dp_size == 1:
from colossalai.core import global_context as gpc
self.ep_group = gpc.get_group(ParallelMode.DATA)
self.dp_group = gpc.get_group(ParallelMode.TENSOR)
return
rank = dist.get_rank()
# Create expert parallel group
for i in range(dp_size):
ranks = [i * ep_size + j for j in range(ep_size)]
group = dist.new_group(ranks)
if rank in ranks:
self.ep_group = group
# Create data parallel group
for j in range(ep_size):
ranks = [i * ep_size + j for i in range(dp_size)]
group = dist.new_group(ranks)
if rank in ranks:
self.dp_group = group
self.pg = ProcessGroup(tp_degree=ep_size, dp_degree=dp_size)
self.ep_group = self.pg.tp_process_group()
self.dp_group = self.pg.dp_process_group()
class MoeContext(metaclass=SingletonMeta):