mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2026-01-05 23:54:53 +00:00
Optimize pipeline schedule (#94)
* add pipeline shared module wrapper and update load batch * added model parallel process group for amp and clip grad (#86) * added model parallel process group for amp and clip grad * update amp and clip with model parallel process group * remove pipeline_prev/next group (#88) * micro batch offload * optimize pipeline gpu memory usage * pipeline can receive tensor shape (#93) * optimize pipeline gpu memory usage * fix grad accumulation step counter * rename classes and functions Co-authored-by: Frank Lee <somerlee.9@gmail.com>
This commit is contained in:
@@ -0,0 +1,43 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.context import Config
|
||||
from colossalai.registry import DIST_GROUP_INITIALIZER
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
from ..parallel_mode import ParallelMode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Model(ProcessGroupInitializer):
|
||||
'''A ProcessGroupInitializer for model parallelism (model parallel group contains pipeline and tensor parallel groups).
|
||||
'''
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.model_parallel_size = self.tensor_parallel_size * self.pipeline_parallel_size
|
||||
self.num_group = self.world_size // self.model_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
'''Initialize 1D tensor parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
:return: (local_rank, group_world_size, process_group, ranks_in_group, mode)
|
||||
:rtype: tuple
|
||||
'''
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.MODEL
|
||||
|
||||
for i in range(self.num_group):
|
||||
ranks = [i * self.model_parallel_size + j for j in range(self.model_parallel_size)]
|
||||
group = dist.new_group(ranks)
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
ranks_in_group = ranks
|
||||
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
||||
Reference in New Issue
Block a user