mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-24 11:08:50 +00:00
[FAW] cpu caching operations (#1520)
This commit is contained in:
@@ -30,6 +30,7 @@ class CachedParamMgr(torch.nn.Module):
|
||||
`EvictionStrategy.LFU`: use the least frequently used cache.
|
||||
`EvictionStrategy.DATASET`: use the stats collected from the target dataset. It usually leads to less cpu-gpu communication volume.
|
||||
Defaults to EvictionStrategy.DATASET.
|
||||
use_cpu_caching (bool, optional): use cpu to execute cache indexing. It is slower than use gpu.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -39,6 +40,7 @@ class CachedParamMgr(torch.nn.Module):
|
||||
buffer_size: int = 50_000,
|
||||
pin_weight: bool = False,
|
||||
evict_strategy: EvictionStrategy = EvictionStrategy.DATASET,
|
||||
use_cpu_caching=False,
|
||||
) -> None:
|
||||
super(CachedParamMgr, self).__init__()
|
||||
self.buffer_size = buffer_size
|
||||
@@ -48,6 +50,13 @@ class CachedParamMgr(torch.nn.Module):
|
||||
self.pin_weight = pin_weight
|
||||
self.elem_size_in_byte = weight.element_size()
|
||||
|
||||
self._cpu_caching = use_cpu_caching
|
||||
|
||||
if self._cpu_caching:
|
||||
self._cache_dev = torch.device('cpu')
|
||||
else:
|
||||
self._cache_dev = torch.cuda.current_device()
|
||||
|
||||
# weight configure
|
||||
self._init_weight(weight)
|
||||
|
||||
@@ -62,10 +71,15 @@ class CachedParamMgr(torch.nn.Module):
|
||||
if self._evict_strategy == EvictionStrategy.LFU:
|
||||
# cache_row_idx -> frequency, freq of the cache rows.
|
||||
# classic lfu cache. evict the minimal freq value row in cuda cache.
|
||||
self.register_buffer("freq_cnter",
|
||||
torch.empty(self.cuda_row_num, device=torch.cuda.current_device(),
|
||||
dtype=torch.long).fill_(sys.maxsize),
|
||||
persistent=False)
|
||||
if self._cpu_caching:
|
||||
self.freq_cnter = torch.empty(self.cuda_row_num, device=self._cache_dev,
|
||||
dtype=torch.long).fill_(sys.maxsize)
|
||||
|
||||
else:
|
||||
self.register_buffer("freq_cnter",
|
||||
torch.empty(self.cuda_row_num, device=self._cache_dev,
|
||||
dtype=torch.long).fill_(sys.maxsize),
|
||||
persistent=False)
|
||||
|
||||
def _find_evict_gpu_idxs(self, evict_num: int) -> torch.Tensor:
|
||||
"""_find_evict_gpu_idxs
|
||||
@@ -105,26 +119,32 @@ class CachedParamMgr(torch.nn.Module):
|
||||
self.weight = weight.pin_memory() if self.pin_weight else weight
|
||||
# map original id to new id with respect to frequency
|
||||
# id -> cpu_row_idx
|
||||
self.register_buffer(
|
||||
"idx_map",
|
||||
torch.arange(self.num_embeddings, dtype=torch.long, device=torch.cuda.current_device()),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
# cached_idx_map: gpu_row_idx -> cpu_row_idx
|
||||
self.register_buffer("cached_idx_map",
|
||||
torch.empty(self.cuda_row_num, device=torch.cuda.current_device(),
|
||||
dtype=torch.long).fill_(-1),
|
||||
persistent=False)
|
||||
if self._cpu_caching:
|
||||
self.idx_map = torch.arange(self.num_embeddings, dtype=torch.long, device=self._cache_dev)
|
||||
self.cached_idx_map = torch.empty(self.cuda_row_num, device=self._cache_dev, dtype=torch.long).fill_(-1)
|
||||
self.inverted_cached_idx = torch.zeros(self.num_embeddings, device=self._cache_dev,
|
||||
dtype=torch.long).fill_(-1)
|
||||
else:
|
||||
self.register_buffer(
|
||||
"idx_map",
|
||||
torch.arange(self.num_embeddings, dtype=torch.long, device=self._cache_dev),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
# cpu_row_id -> gpu_row_idx.
|
||||
# gpu_row_idx as -1 means cpu_row_id not in CUDA.
|
||||
self.register_buffer("inverted_cached_idx",
|
||||
torch.zeros(self.num_embeddings, device=torch.cuda.current_device(),
|
||||
dtype=torch.long).fill_(-1),
|
||||
persistent=False)
|
||||
# cached_idx_map: gpu_row_idx -> cpu_row_idx
|
||||
self.register_buffer("cached_idx_map",
|
||||
torch.empty(self.cuda_row_num, device=self._cache_dev, dtype=torch.long).fill_(-1),
|
||||
persistent=False)
|
||||
|
||||
self.evict_backlist = torch.tensor([], device=torch.cuda.current_device())
|
||||
# cpu_row_id -> gpu_row_idx.
|
||||
# gpu_row_idx as -1 means cpu_row_id not in CUDA.
|
||||
self.register_buffer("inverted_cached_idx",
|
||||
torch.zeros(self.num_embeddings, device=self._cache_dev,
|
||||
dtype=torch.long).fill_(-1),
|
||||
persistent=False)
|
||||
|
||||
self.evict_backlist = torch.tensor([], device=self._cache_dev)
|
||||
|
||||
# index copy buffer size should less than 10% of cuda weight.
|
||||
if self.buffer_size > 0:
|
||||
@@ -191,24 +211,24 @@ class CachedParamMgr(torch.nn.Module):
|
||||
# extract rows from cpu weight
|
||||
if self._evict_strategy == EvictionStrategy.LFU and ids_freq_mapping is not None:
|
||||
freq_value, preload_cpu_ids = torch.topk(ids_freq_mapping, preload_row_num, dim=0, largest=True)
|
||||
preload_cuda_row_idxs = torch.arange(preload_row_num).cuda()
|
||||
preload_cuda_row_idxs = torch.arange(preload_row_num).to(self._cache_dev)
|
||||
else:
|
||||
preload_cpu_ids = torch.arange(preload_row_num)
|
||||
preload_cuda_row_idxs = preload_cpu_ids.cuda()
|
||||
preload_cuda_row_idxs = preload_cpu_ids.to(self._cache_dev)
|
||||
|
||||
if self.buffer_size > 0:
|
||||
self.limit_buff_index_copyer.index_copy(0,
|
||||
src_index=preload_cpu_ids,
|
||||
tgt_index=preload_cuda_row_idxs,
|
||||
tgt_index=preload_cuda_row_idxs.cuda(),
|
||||
src=self.weight.view(self.num_embeddings, -1),
|
||||
tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1))
|
||||
else:
|
||||
preload_rows = self.weight.view(self.num_embeddings, -1).index_select(0, preload_cpu_ids).cuda()
|
||||
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, preload_cuda_row_idxs,
|
||||
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, preload_cuda_row_idxs.cuda(),
|
||||
preload_rows)
|
||||
|
||||
# update auxiliary info
|
||||
self.cached_idx_map[preload_cuda_row_idxs] = preload_cpu_ids.cuda()
|
||||
self.cached_idx_map[preload_cuda_row_idxs] = preload_cpu_ids.to(self._cache_dev)
|
||||
self.inverted_cached_idx[preload_cpu_ids] = preload_cuda_row_idxs
|
||||
self._cuda_available_row_num -= preload_row_num
|
||||
|
||||
@@ -217,7 +237,7 @@ class CachedParamMgr(torch.nn.Module):
|
||||
if ids_freq_mapping is None:
|
||||
self.freq_cnter.index_fill_(0, preload_cuda_row_idxs, 0)
|
||||
else:
|
||||
self.freq_cnter[preload_cuda_row_idxs] = freq_value.cuda()
|
||||
self.freq_cnter[preload_cuda_row_idxs] = freq_value.to(self._cache_dev)
|
||||
|
||||
print(f'Cache warmup finished cost {timer.elapsed} sec.')
|
||||
|
||||
@@ -227,7 +247,7 @@ class CachedParamMgr(torch.nn.Module):
|
||||
"""
|
||||
slots = torch.nonzero(self.cached_idx_map > -1).squeeze(1)
|
||||
row_ids = self.cached_idx_map[slots]
|
||||
rows = self.cuda_cached_weight.view(self.cuda_row_num, -1).index_select(0, slots).cpu()
|
||||
rows = self.cuda_cached_weight.view(self.cuda_row_num, -1).index_select(0, slots.cuda()).cpu()
|
||||
self.weight.view(self.num_embeddings, -1).index_copy_(0, row_ids.cpu(), rows)
|
||||
self.cached_idx_map.index_fill_(0, slots, -1)
|
||||
self.inverted_cached_idx.index_fill_(0, row_ids, -1)
|
||||
@@ -276,6 +296,7 @@ class CachedParamMgr(torch.nn.Module):
|
||||
torch.Tensor: indices on the cuda_cached_weight.
|
||||
"""
|
||||
with record_function("(zhg) get unique indices"):
|
||||
ids = ids.to(self._cache_dev)
|
||||
cpu_row_idxs, repeat_times = torch.unique(self.idx_map.index_select(0, ids), return_counts=True)
|
||||
|
||||
assert len(cpu_row_idxs) <= self.cuda_row_num, \
|
||||
@@ -353,7 +374,8 @@ class CachedParamMgr(torch.nn.Module):
|
||||
tgt=self.weight.view(self.num_embeddings, -1))
|
||||
else:
|
||||
# allocate tmp memory on CPU and copy rows on CUDA to CPU.
|
||||
rows = self.cuda_cached_weight.view(self.cuda_row_num, -1).index_select(0, evict_gpu_row_idxs).cpu()
|
||||
rows = self.cuda_cached_weight.view(self.cuda_row_num,
|
||||
-1).index_select(0, evict_gpu_row_idxs.cuda()).cpu()
|
||||
self.weight.view(self.num_embeddings, -1).index_copy_(0, evict_info.cpu(), rows)
|
||||
|
||||
self.cached_idx_map.index_fill_(0, evict_gpu_row_idxs, -1)
|
||||
@@ -372,12 +394,12 @@ class CachedParamMgr(torch.nn.Module):
|
||||
if self.buffer_size > 0:
|
||||
self.limit_buff_index_copyer.index_copy(0,
|
||||
src_index=cpu_row_idxs.cpu(),
|
||||
tgt_index=slots,
|
||||
tgt_index=slots.cuda(),
|
||||
src=self.weight.view(self.num_embeddings, -1),
|
||||
tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1))
|
||||
else:
|
||||
rows = self.weight.view(self.num_embeddings, -1).index_select(0, cpu_row_idxs.cpu()).cuda()
|
||||
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, slots, rows)
|
||||
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, slots.cuda(), rows)
|
||||
slot_offsets = slots
|
||||
self.cached_idx_map[slots] = cpu_row_idxs
|
||||
self.inverted_cached_idx.index_copy_(0, cpu_row_idxs, slot_offsets)
|
||||
|
Reference in New Issue
Block a user