[tensor] wrap function in the torch_tensor to ColoTensor (#881)

This commit is contained in:
Ziyue Jiang
2022-04-26 20:13:56 +08:00
committed by GitHub
parent 4df6471f5d
commit 9bc5a77c31
2 changed files with 41 additions and 19 deletions

View File

@@ -2,7 +2,7 @@ from colossalai.context import parallel_mode
from .op_wrapper import _COLOSSAL_OPS
import torch
from typing import Tuple, Optional
from typing import Tuple, Optional, Callable
from numpy import product
from colossalai.core import global_context as gpc
from colossalai.nn.layer.utils import divide
@@ -152,26 +152,28 @@ class ColoTensor(object):
kwargs = {}
kwargs = {k: v.torch_tensor() if isinstance(v, ColoTensor) else v for k, v in kwargs.items()}
return ColoTensor.init_from_torch_tensor(func(*args, **kwargs))
return cls._filter_outputs_with_colo(func(*args,**kwargs))
def backward(self, gradient: Optional[torch.Tensor] = None, retain_graph: bool = False):
self._torch_tensor.backward(gradient=gradient, retain_graph=retain_graph)
## TODO(fjr) we reduce redundency of the following code
def __add__(self, o) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor() + o.torch_tensor())
def __getattr__(self, name):
def replace_tensor_with_colo(func):
def execute_func(*args, **kwargs):
return self._filter_outputs_with_colo(func(*args,**kwargs))
return execute_func
def __truediv__(self, o) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor() / o)
attr = getattr(self._torch_tensor, name)
if isinstance(attr, Callable):
return replace_tensor_with_colo(attr)
else:
return attr
def view(self, *args: int) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor().view(*args))
def permute(self, *args) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor().permute(*args))
def transpose(self, *args) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor().transpose(*args))
def contiguous(self):
return ColoTensor.init_from_torch_tensor(self.torch_tensor().contiguous())
@classmethod
def _filter_outputs_with_colo(cls, outputs):
if outputs is None: # return None
return None
elif type(outputs) is not tuple: # num of return val = 1
return ColoTensor.init_from_torch_tensor(outputs) if type(outputs) is torch.Tensor else outputs
else: # num of return val > 1
return tuple([ColoTensor.init_from_torch_tensor(output) if type(output) is torch.Tensor else output for output in outputs])