mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-14 05:33:23 +00:00
moved env variables to global variables; (#215)
added branch context; added vocab parallel layers; moved split_batch from load_batch to tensor parallel embedding layers; updated gpt model; updated unit test cases; fixed few collective communicator bugs
This commit is contained in:
@@ -1,11 +1,12 @@
|
||||
import torch
|
||||
from torch.nn import Parameter
|
||||
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.nn import Linear2D, LayerNorm2D, Classifier2D
|
||||
from colossalai.nn import (Classifier2D, CrossEntropyLoss2D, Embedding2D, LayerNorm2D, Linear2D, PatchEmbedding2D,
|
||||
VanillaClassifier, VanillaPatchEmbedding, VocabParallelClassifier2D,
|
||||
VocabParallelCrossEntropyLoss2D, VocabParallelEmbedding2D)
|
||||
from colossalai.utils import get_current_device, print_rank_0
|
||||
from .common import HIDDEN_SIZE, DEPTH, BATCH_SIZE, SEQ_LENGTH, check_equal, NUM_CLASSES
|
||||
|
||||
from .common import (BATCH_SIZE, DEPTH, HIDDEN_SIZE, IMG_SIZE, NUM_CLASSES, SEQ_LENGTH, VOCAB_SIZE, check_equal)
|
||||
|
||||
|
||||
def check_linear():
|
||||
@@ -57,7 +58,6 @@ def check_linear():
|
||||
C = torch.chunk(C_master, DEPTH, dim=0)[i]
|
||||
C = torch.chunk(C, DEPTH, dim=-1)[j]
|
||||
|
||||
# print(f'Rank {gpc.get_global_rank()} A:\n{A}\nRank {gpc.get_global_rank()} W:\n{W}\nRank {gpc.get_global_rank()} b:\n{B}\nRank {gpc.get_global_rank()} C:\n{C}\nRank {gpc.get_global_rank()} out:\n{out}')
|
||||
check_equal(out, C)
|
||||
print_rank_0('linear forward: pass')
|
||||
|
||||
@@ -90,84 +90,6 @@ def check_linear():
|
||||
print_rank_0('linear backward: pass')
|
||||
|
||||
|
||||
def check_classifier():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
INPUT_SIZE = HIDDEN_SIZE
|
||||
OUTPUT_SIZE = NUM_CLASSES
|
||||
|
||||
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
||||
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
|
||||
|
||||
layer = Classifier2D(INPUT_SIZE, OUTPUT_SIZE)
|
||||
|
||||
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
|
||||
A_master = torch.randint(5, A_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(A_master, src=0)
|
||||
A = torch.chunk(A_master, DEPTH, dim=0)[i]
|
||||
A = torch.chunk(A, DEPTH, dim=-1)[j]
|
||||
A = A.clone()
|
||||
A.requires_grad = True
|
||||
|
||||
W_shape = (OUTPUT_SIZE, INPUT_SIZE)
|
||||
W_master = torch.randint(5, W_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(W_master, src=0)
|
||||
W = torch.chunk(W_master, DEPTH, dim=-1)[j]
|
||||
W = torch.chunk(W, DEPTH, dim=-1)[i]
|
||||
W = W.clone()
|
||||
layer.weight.data.copy_(W)
|
||||
# W.requires_grad = True
|
||||
|
||||
B_shape = (OUTPUT_SIZE,)
|
||||
B_master = torch.randint(5, B_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(B_master, src=0)
|
||||
# B = torch.chunk(B_master, DEPTH, dim=0)[j]
|
||||
B = B_master.clone()
|
||||
layer.bias.data.copy_(B)
|
||||
|
||||
out = layer(A)
|
||||
|
||||
A_master = A_master.clone()
|
||||
A_master.requires_grad = True
|
||||
W_master = W_master.clone()
|
||||
W_master.requires_grad = True
|
||||
B_master = B_master.clone()
|
||||
B_master.requires_grad = True
|
||||
C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master
|
||||
C = torch.chunk(C_master, DEPTH, dim=0)[i]
|
||||
# C = torch.chunk(C, DEPTH, dim=-1)[j]
|
||||
|
||||
check_equal(out, C)
|
||||
print_rank_0('classifier forward: pass')
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
|
||||
torch.distributed.broadcast(grad_master, src=0)
|
||||
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
|
||||
# grad = torch.chunk(grad, DEPTH, dim=-1)[j]
|
||||
grad = grad.clone()
|
||||
out.backward(grad)
|
||||
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
A_grad = A_master.grad
|
||||
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
|
||||
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[j]
|
||||
check_equal(A_grad, A.grad)
|
||||
|
||||
W_grad = W_master.grad
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j]
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[i]
|
||||
check_equal(W_grad, layer.weight.grad)
|
||||
|
||||
B_grad = B_master.grad
|
||||
# B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
|
||||
# if i == 0:
|
||||
check_equal(B_grad, layer.bias.grad)
|
||||
|
||||
print_rank_0('classifier backward: pass')
|
||||
|
||||
|
||||
def check_layernorm():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
@@ -219,6 +141,497 @@ def check_layernorm():
|
||||
print_rank_0('layer norm backward: pass')
|
||||
|
||||
|
||||
def check_embed():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
||||
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
|
||||
|
||||
embed = Embedding2D(VOCAB_SIZE, HIDDEN_SIZE)
|
||||
embed = embed.to(dtype).to(device)
|
||||
embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE)
|
||||
embed_master = embed_master.to(dtype).to(device)
|
||||
|
||||
weight_master = embed_master.weight.data
|
||||
torch.distributed.broadcast(weight_master, src=0)
|
||||
weight = torch.chunk(weight_master, DEPTH, dim=-1)[j]
|
||||
weight = torch.chunk(weight, DEPTH, dim=-1)[i]
|
||||
embed.weight.data.copy_(weight)
|
||||
|
||||
A_shape = (BATCH_SIZE, SEQ_LENGTH)
|
||||
A_master = torch.randint(VOCAB_SIZE, A_shape, device=device)
|
||||
torch.distributed.broadcast(A_master, src=0)
|
||||
A = A_master.clone()
|
||||
out = embed(A)
|
||||
|
||||
A_master = A_master.clone()
|
||||
C_master = embed_master(A_master)
|
||||
C = torch.chunk(C_master, DEPTH, dim=0)[i]
|
||||
C = torch.chunk(C, DEPTH, dim=-1)[j]
|
||||
check_equal(out, C)
|
||||
print_rank_0('embed forward: pass')
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(grad_master, src=0)
|
||||
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
|
||||
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
|
||||
grad = grad.clone()
|
||||
out.backward(grad)
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
|
||||
B_grad = embed_master.weight.grad
|
||||
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
|
||||
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
|
||||
check_equal(B_grad, embed.weight.grad)
|
||||
print_rank_0('embed backward: pass')
|
||||
|
||||
|
||||
def check_patch_embed():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
||||
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
|
||||
|
||||
layer = PatchEmbedding2D(IMG_SIZE, 4, 3, HIDDEN_SIZE, dtype=dtype)
|
||||
torch.nn.init.ones_(layer.cls_token)
|
||||
torch.nn.init.ones_(layer.pos_embed)
|
||||
layer = layer.to(device)
|
||||
|
||||
layer_master = VanillaPatchEmbedding(IMG_SIZE, 4, 3, HIDDEN_SIZE, dtype=dtype)
|
||||
torch.nn.init.ones_(layer_master.cls_token)
|
||||
torch.nn.init.ones_(layer_master.pos_embed)
|
||||
layer_master = layer_master.to(device)
|
||||
|
||||
proj_weight_master = layer_master.weight.data
|
||||
torch.distributed.broadcast(proj_weight_master, src=0)
|
||||
proj_weight = torch.chunk(proj_weight_master, DEPTH, dim=0)[j]
|
||||
proj_weight = torch.chunk(proj_weight, DEPTH, dim=0)[i]
|
||||
layer.weight.data.copy_(proj_weight)
|
||||
proj_bias_master = layer_master.bias.data
|
||||
torch.distributed.broadcast(proj_bias_master, src=0)
|
||||
proj_bias = torch.chunk(proj_bias_master, DEPTH, dim=0)[j]
|
||||
proj_bias = torch.chunk(proj_bias, DEPTH, dim=0)[i]
|
||||
layer.bias.data.copy_(proj_bias)
|
||||
|
||||
A_shape = (BATCH_SIZE, 3, IMG_SIZE, IMG_SIZE)
|
||||
A_master = torch.randn(A_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(A_master, src=0)
|
||||
A = A_master.clone()
|
||||
out = layer(A)
|
||||
|
||||
A_master = A_master.clone()
|
||||
C_master = layer_master(A_master)
|
||||
C = torch.chunk(C_master, DEPTH, dim=0)[i]
|
||||
C = torch.chunk(C, DEPTH, dim=-1)[j]
|
||||
check_equal(out, C)
|
||||
print_rank_0('patch embed forward: pass')
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(grad_master, src=0)
|
||||
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
|
||||
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
|
||||
grad = grad.clone()
|
||||
out.backward(grad)
|
||||
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
|
||||
cls_grad_master = layer_master.cls_token.grad
|
||||
cls_grad = torch.chunk(cls_grad_master, DEPTH, dim=-1)[j]
|
||||
cls_grad = torch.chunk(cls_grad, DEPTH, dim=-1)[i]
|
||||
check_equal(cls_grad, layer.cls_token.grad)
|
||||
|
||||
pos_grad_master = layer_master.pos_embed.grad
|
||||
pos_grad = torch.chunk(pos_grad_master, DEPTH, dim=-1)[j]
|
||||
pos_grad = torch.chunk(pos_grad, DEPTH, dim=-1)[i]
|
||||
check_equal(pos_grad, layer.pos_embed.grad)
|
||||
|
||||
B_grad = layer_master.weight.grad
|
||||
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
|
||||
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i]
|
||||
check_equal(B_grad, layer.weight.grad)
|
||||
|
||||
bias_grad = layer_master.bias.grad
|
||||
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
|
||||
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
|
||||
check_equal(bias_grad, layer.bias.grad)
|
||||
print_rank_0('patch embed backward: pass')
|
||||
|
||||
|
||||
def check_vocab_parallel_embed():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
||||
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
|
||||
|
||||
embed = VocabParallelEmbedding2D(VOCAB_SIZE, HIDDEN_SIZE)
|
||||
embed = embed.to(dtype).to(device)
|
||||
embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE)
|
||||
embed_master = embed_master.to(dtype).to(device)
|
||||
|
||||
weight_master = embed_master.weight.data
|
||||
torch.distributed.broadcast(weight_master, src=0)
|
||||
weight = torch.chunk(weight_master, DEPTH, dim=-1)[j]
|
||||
weight = torch.chunk(weight, DEPTH, dim=0)[i]
|
||||
embed.weight.data.copy_(weight)
|
||||
|
||||
A_shape = (BATCH_SIZE, SEQ_LENGTH)
|
||||
A_master = torch.randint(VOCAB_SIZE, A_shape, device=device)
|
||||
torch.distributed.broadcast(A_master, src=0)
|
||||
A = A_master.clone()
|
||||
out = embed(A)
|
||||
|
||||
A_master = A_master.clone()
|
||||
C_master = embed_master(A_master)
|
||||
C = torch.chunk(C_master, DEPTH, dim=0)[i]
|
||||
C = torch.chunk(C, DEPTH, dim=-1)[j]
|
||||
check_equal(out, C)
|
||||
print_rank_0('vocab parallel embed forward: pass')
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(grad_master, src=0)
|
||||
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
|
||||
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
|
||||
grad = grad.clone()
|
||||
out.backward(grad)
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
|
||||
B_grad = embed_master.weight.grad
|
||||
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
|
||||
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i]
|
||||
check_equal(B_grad, embed.weight.grad)
|
||||
print_rank_0('vocab parallel embed backward: pass')
|
||||
|
||||
|
||||
def check_classifier_no_given_weight():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
INPUT_SIZE = HIDDEN_SIZE
|
||||
OUTPUT_SIZE = NUM_CLASSES
|
||||
|
||||
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
||||
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
|
||||
|
||||
layer = Classifier2D(INPUT_SIZE, OUTPUT_SIZE)
|
||||
|
||||
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
|
||||
A_master = torch.randint(5, A_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(A_master, src=0)
|
||||
A = torch.chunk(A_master, DEPTH, dim=0)[i]
|
||||
A = torch.chunk(A, DEPTH, dim=-1)[j]
|
||||
A = A.clone()
|
||||
A.requires_grad = True
|
||||
|
||||
W_shape = (OUTPUT_SIZE, INPUT_SIZE)
|
||||
W_master = torch.randint(5, W_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(W_master, src=0)
|
||||
W = torch.chunk(W_master, DEPTH, dim=-1)[j]
|
||||
W = torch.chunk(W, DEPTH, dim=-1)[i]
|
||||
W = W.clone()
|
||||
layer.weight.data.copy_(W)
|
||||
# W.requires_grad = True
|
||||
|
||||
B_shape = (OUTPUT_SIZE, )
|
||||
B_master = torch.randint(5, B_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(B_master, src=0)
|
||||
# B = torch.chunk(B_master, DEPTH, dim=0)[j]
|
||||
B = B_master.clone()
|
||||
layer.bias.data.copy_(B)
|
||||
|
||||
out = layer(A)
|
||||
|
||||
A_master = A_master.clone()
|
||||
A_master.requires_grad = True
|
||||
W_master = W_master.clone()
|
||||
W_master.requires_grad = True
|
||||
B_master = B_master.clone()
|
||||
B_master.requires_grad = True
|
||||
C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master
|
||||
C = torch.chunk(C_master, DEPTH, dim=0)[i]
|
||||
# C = torch.chunk(C, DEPTH, dim=-1)[j]
|
||||
|
||||
check_equal(out, C)
|
||||
print_rank_0('classifier (no given weight) forward: pass')
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
|
||||
torch.distributed.broadcast(grad_master, src=0)
|
||||
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
|
||||
# grad = torch.chunk(grad, DEPTH, dim=-1)[j]
|
||||
grad = grad.clone()
|
||||
out.backward(grad)
|
||||
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
A_grad = A_master.grad
|
||||
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
|
||||
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[j]
|
||||
check_equal(A_grad, A.grad)
|
||||
|
||||
W_grad = W_master.grad
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j]
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[i]
|
||||
check_equal(W_grad, layer.weight.grad)
|
||||
|
||||
B_grad = B_master.grad
|
||||
# B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
|
||||
# if i == 0:
|
||||
check_equal(B_grad, layer.bias.grad)
|
||||
|
||||
print_rank_0('classifier (no given weight) backward: pass')
|
||||
|
||||
|
||||
def check_vocab_parallel_classifier_no_given_weight():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
|
||||
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
||||
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
|
||||
|
||||
layer = VocabParallelClassifier2D(HIDDEN_SIZE, VOCAB_SIZE, bias=True)
|
||||
layer = layer.to(dtype).to(device)
|
||||
|
||||
layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, bias=True)
|
||||
layer_master = layer_master.to(dtype).to(device)
|
||||
|
||||
weight_master = layer_master.weight.data
|
||||
torch.distributed.broadcast(weight_master, src=0)
|
||||
weight = torch.chunk(weight_master, DEPTH, dim=0)[i]
|
||||
weight = torch.chunk(weight, DEPTH, dim=-1)[j]
|
||||
layer.weight.data.copy_(weight)
|
||||
bias_master = layer_master.bias.data
|
||||
torch.distributed.broadcast(bias_master, src=0)
|
||||
bias = torch.chunk(bias_master, DEPTH)[j]
|
||||
bias = torch.chunk(bias, DEPTH)[i]
|
||||
layer.bias.data.copy_(bias)
|
||||
|
||||
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
|
||||
A_master = torch.randn(A_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(A_master, src=0)
|
||||
A = torch.chunk(A_master, DEPTH, dim=0)[i]
|
||||
A = torch.chunk(A, DEPTH, dim=-1)[j]
|
||||
A = A.clone()
|
||||
A.requires_grad = True
|
||||
out = layer(A)
|
||||
|
||||
A_master = A_master.clone()
|
||||
A_master.requires_grad = True
|
||||
C_master = layer_master(A_master)
|
||||
C = torch.chunk(C_master, DEPTH, dim=0)[i]
|
||||
C = torch.chunk(C, DEPTH, dim=-1)[j]
|
||||
check_equal(out, C)
|
||||
print_rank_0('vocab parallel classifier (no given weight) forward: pass')
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(grad_master, src=0)
|
||||
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
|
||||
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
|
||||
grad = grad.clone()
|
||||
out.backward(grad)
|
||||
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
A_grad = A_master.grad
|
||||
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
|
||||
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[j]
|
||||
check_equal(A_grad, A.grad)
|
||||
|
||||
W_grad = layer_master.weight.grad
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=0)[i]
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j]
|
||||
check_equal(W_grad, layer.weight.grad)
|
||||
|
||||
B_grad = layer_master.bias.grad
|
||||
B_grad = torch.chunk(B_grad, DEPTH)[j]
|
||||
B_grad = torch.chunk(B_grad, DEPTH)[i]
|
||||
check_equal(B_grad, layer.bias.grad)
|
||||
print_rank_0('vocab parallel classifier (no given weight) backward: pass')
|
||||
|
||||
|
||||
def check_classifier_given_embed_weight():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
|
||||
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
||||
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
|
||||
|
||||
embed = Embedding2D(VOCAB_SIZE, HIDDEN_SIZE)
|
||||
embed = embed.to(dtype).to(device)
|
||||
embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE)
|
||||
embed_master = embed_master.to(dtype).to(device)
|
||||
|
||||
weight_master = embed_master.weight.data
|
||||
torch.distributed.broadcast(weight_master, src=0)
|
||||
weight = torch.chunk(weight_master, DEPTH, dim=-1)[j]
|
||||
weight = torch.chunk(weight, DEPTH, dim=-1)[i]
|
||||
embed.weight.data.copy_(weight)
|
||||
|
||||
layer = Classifier2D(HIDDEN_SIZE, VOCAB_SIZE, weight=embed.weight, bias=False)
|
||||
layer = layer.to(dtype).to(device)
|
||||
layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, weight=embed_master.weight, bias=False)
|
||||
layer_master = layer_master.to(dtype).to(device)
|
||||
|
||||
A_shape = (BATCH_SIZE, SEQ_LENGTH)
|
||||
A_master = torch.randint(VOCAB_SIZE, A_shape, device=device)
|
||||
torch.distributed.broadcast(A_master, src=0)
|
||||
A = A_master.clone()
|
||||
out = layer(embed(A))
|
||||
|
||||
A_master = A_master.clone()
|
||||
C_master = layer_master(embed_master(A_master))
|
||||
C = torch.chunk(C_master, DEPTH, dim=0)[i]
|
||||
check_equal(out, C)
|
||||
print_rank_0('classifier (given embed weight) forward: pass')
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(grad_master, src=0)
|
||||
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
|
||||
grad = grad.clone()
|
||||
out.backward(grad)
|
||||
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
|
||||
W_grad = embed_master.weight.grad
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j]
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[i]
|
||||
check_equal(W_grad, embed.weight.grad)
|
||||
print_rank_0('classifier (given embed weight) backward: pass')
|
||||
|
||||
|
||||
def check_vocab_parallel_classifier_given_embed_weight():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
|
||||
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
||||
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
|
||||
|
||||
embed = VocabParallelEmbedding2D(VOCAB_SIZE, HIDDEN_SIZE)
|
||||
embed = embed.to(dtype).to(device)
|
||||
embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE)
|
||||
embed_master = embed_master.to(dtype).to(device)
|
||||
|
||||
weight_master = embed_master.weight.data
|
||||
torch.distributed.broadcast(weight_master, src=0)
|
||||
weight = torch.chunk(weight_master, DEPTH, dim=-1)[j]
|
||||
weight = torch.chunk(weight, DEPTH, dim=0)[i]
|
||||
embed.weight.data.copy_(weight)
|
||||
|
||||
layer = VocabParallelClassifier2D(HIDDEN_SIZE, VOCAB_SIZE, weight=embed.weight, bias=False)
|
||||
layer = layer.to(dtype).to(device)
|
||||
layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, weight=embed_master.weight, bias=False)
|
||||
layer_master = layer_master.to(dtype).to(device)
|
||||
|
||||
A_shape = (BATCH_SIZE, SEQ_LENGTH)
|
||||
A_master = torch.randint(VOCAB_SIZE, A_shape, device=device)
|
||||
torch.distributed.broadcast(A_master, src=0)
|
||||
A = A_master.clone()
|
||||
out = layer(embed(A))
|
||||
|
||||
A_master = A_master.clone()
|
||||
C_master = layer_master(embed_master(A_master))
|
||||
C = torch.chunk(C_master, DEPTH, dim=0)[i]
|
||||
C = torch.chunk(C, DEPTH, dim=-1)[j]
|
||||
check_equal(out, C)
|
||||
print_rank_0('vocab parallel classifier (given embed weight) forward: pass')
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
|
||||
torch.distributed.broadcast(grad_master, src=0)
|
||||
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
|
||||
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
|
||||
grad = grad.clone()
|
||||
out.backward(grad)
|
||||
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
|
||||
W_grad = embed_master.weight.grad
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j]
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=0)[i]
|
||||
check_equal(W_grad, embed.weight.grad)
|
||||
print_rank_0('vocab parallel classifier (given embed weight) backward: pass')
|
||||
|
||||
|
||||
def check_loss():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
|
||||
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
||||
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
|
||||
|
||||
criterion = CrossEntropyLoss2D()
|
||||
criterion_master = torch.nn.CrossEntropyLoss()
|
||||
|
||||
out_shape = (BATCH_SIZE, NUM_CLASSES)
|
||||
out_master = torch.randn(out_shape, dtype=dtype, device=device)
|
||||
target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ), dtype=torch.long, device=device)
|
||||
torch.distributed.broadcast(out_master, src=0)
|
||||
torch.distributed.broadcast(target_master, src=0)
|
||||
out = torch.chunk(out_master, DEPTH, dim=0)[i]
|
||||
out = out.clone()
|
||||
out.requires_grad = True
|
||||
loss = criterion(out, target_master)
|
||||
|
||||
out_master = out_master.clone()
|
||||
out_master.requires_grad = True
|
||||
loss_master = criterion_master(out_master, target_master)
|
||||
check_equal(loss, loss_master)
|
||||
print_rank_0('cross entropy loss forward: pass')
|
||||
|
||||
loss.backward()
|
||||
loss_master.backward()
|
||||
|
||||
out_grad = out_master.grad
|
||||
out_grad = torch.chunk(out_grad, DEPTH, dim=0)[i]
|
||||
check_equal(out_grad, out.grad)
|
||||
print_rank_0('cross entropy loss backward: pass')
|
||||
|
||||
|
||||
def check_vocab_parallel_loss():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
|
||||
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
||||
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
|
||||
|
||||
criterion = VocabParallelCrossEntropyLoss2D()
|
||||
criterion_master = torch.nn.CrossEntropyLoss()
|
||||
|
||||
out_shape = (BATCH_SIZE, NUM_CLASSES)
|
||||
out_master = torch.randn(out_shape, dtype=dtype, device=device)
|
||||
target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ), dtype=torch.long, device=device)
|
||||
torch.distributed.broadcast(out_master, src=0)
|
||||
torch.distributed.broadcast(target_master, src=0)
|
||||
out = torch.chunk(out_master, DEPTH, dim=0)[i]
|
||||
out = torch.chunk(out, DEPTH, dim=-1)[j]
|
||||
out = out.clone()
|
||||
out.requires_grad = True
|
||||
loss = criterion(out, target_master)
|
||||
|
||||
out_master = out_master.clone()
|
||||
out_master.requires_grad = True
|
||||
loss_master = criterion_master(out_master, target_master)
|
||||
check_equal(loss, loss_master)
|
||||
print_rank_0('vocab parallel cross entropy loss forward: pass')
|
||||
|
||||
loss.backward()
|
||||
loss_master.backward()
|
||||
|
||||
out_grad = out_master.grad
|
||||
out_grad = torch.chunk(out_grad, DEPTH, dim=0)[i]
|
||||
out_grad = torch.chunk(out_grad, DEPTH, dim=-1)[j]
|
||||
check_equal(out_grad, out.grad)
|
||||
print_rank_0('vocab parallel cross entropy loss backward: pass')
|
||||
|
||||
|
||||
# def check_attention():
|
||||
# device = get_current_device()
|
||||
# dtype = torch.float32
|
||||
@@ -257,7 +670,6 @@ def check_layernorm():
|
||||
# assert A.grad.shape == A.shape
|
||||
# print_rank_0('self attention backward: pass')
|
||||
|
||||
|
||||
# def check_mlp():
|
||||
# device = get_current_device()
|
||||
# dtype = torch.float32
|
||||
@@ -291,7 +703,6 @@ def check_layernorm():
|
||||
# assert A.grad.shape == A.shape
|
||||
# print_rank_0('mlp backward: pass')
|
||||
|
||||
|
||||
# def check_transformerlayer():
|
||||
# device = get_current_device()
|
||||
# dtype = torch.float32
|
||||
|
@@ -8,6 +8,9 @@ BATCH_SIZE = 8
|
||||
SEQ_LENGTH = 8
|
||||
HIDDEN_SIZE = 8
|
||||
NUM_CLASSES = 8
|
||||
VOCAB_SIZE = 16
|
||||
IMG_SIZE = 16
|
||||
|
||||
|
||||
def check_equal(A, B):
|
||||
assert torch.allclose(A, B, rtol=1e-3, atol=1e-2) == True
|
||||
assert torch.allclose(A, B, rtol=1e-3, atol=1e-2)
|
||||
|
@@ -8,20 +8,17 @@ import torch
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.utils import free_port
|
||||
|
||||
from checks_2d.check_layer_2d import *
|
||||
from checks_2d.check_operation_2d import *
|
||||
from checks_2d.check_layer_2d import (check_classifier_given_embed_weight, check_classifier_no_given_weight,
|
||||
check_embed, check_layernorm, check_linear, check_loss, check_patch_embed,
|
||||
check_vocab_parallel_classifier_given_embed_weight,
|
||||
check_vocab_parallel_classifier_no_given_weight, check_vocab_parallel_embed,
|
||||
check_vocab_parallel_loss)
|
||||
from checks_2d.check_operation_2d import check_AB, check_ABT, check_ATB
|
||||
|
||||
CONFIG = dict(
|
||||
parallel=dict(
|
||||
pipeline=dict(size=1),
|
||||
tensor=dict(
|
||||
size=4,
|
||||
mode='2d'
|
||||
)
|
||||
),
|
||||
)
|
||||
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='2d')), )
|
||||
|
||||
|
||||
def check_operations():
|
||||
@@ -33,16 +30,24 @@ def check_operations():
|
||||
def check_layer():
|
||||
check_linear()
|
||||
check_layernorm()
|
||||
check_classifier()
|
||||
check_embed()
|
||||
check_patch_embed()
|
||||
check_vocab_parallel_embed()
|
||||
check_classifier_no_given_weight()
|
||||
check_vocab_parallel_classifier_no_given_weight()
|
||||
check_classifier_given_embed_weight()
|
||||
check_vocab_parallel_classifier_given_embed_weight()
|
||||
check_loss()
|
||||
check_vocab_parallel_loss()
|
||||
|
||||
|
||||
def check_layer_and_operation(rank, world_size, port):
|
||||
launch(config=CONFIG,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
host='localhost',
|
||||
port=port,
|
||||
backend='nccl')
|
||||
disable_existing_loggers()
|
||||
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
torch.backends.cudnn.allow_tf32 = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
# check_operations()
|
||||
check_layer()
|
||||
gpc.destroy()
|
||||
|
Reference in New Issue
Block a user