[Inference] Adapt to Fused rotary (#5348)

* revise rotary embedding

* remove useless print

* adapt

* fix

* add

* fix

* modeling

* fix

* fix

* fix
This commit is contained in:
Jianghai
2024-02-07 11:36:04 +08:00
committed by GitHub
parent 35382a7fbf
commit 9f4ab2eb92
5 changed files with 161 additions and 22 deletions

View File

@@ -222,11 +222,11 @@ def fused_rotary_embedding_kernel(
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :] # total_tokens, head_num, head_dim
past_kv_seq_len = tl.load(context_lengths + tokens_range) - 1
past_kv_seq_len = tl.load(context_lengths + tokens_range, mask=(tokens_range < q_total_tokens)) - 1
last_block_idx = past_kv_seq_len // block_size
block_table_ptr = BLOCK_TABLES + tokens_range * bts_stride
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride)
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride, mask=(tokens_range < q_total_tokens))
offsets_in_last_block = (past_kv_seq_len % block_size) * cachebs_stride
kv_range0 = (
@@ -274,6 +274,122 @@ def fused_rotary_embedding_kernel(
)
@triton.jit
def fused_rotary_embedding_kernel_v2(
q,
k,
cos,
sin,
kv_cache,
BLOCK_TABLES,
context_lengths,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
cacheb_stride,
cacheh_stride,
cachebs_stride,
cached_stride,
bts_stride,
btb_stride,
block_size,
q_total_tokens,
Q_HEAD_NUM: tl.constexpr,
K_HEAD_NUM: tl.constexpr,
HEAD_DIM: tl.constexpr,
):
block_head_index = tl.program_id(0)
if block_head_index >= Q_HEAD_NUM:
return
block_token_index = tl.program_id(1)
dim_range0 = tl.arange(0, HEAD_DIM // 2)
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
off_q0 = block_token_index * q_token_stride + block_head_index * q_head_stride + dim_range0 * head_dim_stride
off_q1 = block_token_index * q_token_stride + block_head_index * q_head_stride + dim_range1 * head_dim_stride
off_k0 = block_token_index * k_token_stride + block_head_index * k_head_stride + dim_range0 * head_dim_stride
off_k1 = block_token_index * k_token_stride + block_head_index * k_head_stride + dim_range1 * head_dim_stride
loaded_q0 = tl.load(
q + off_q0,
)
loaded_q1 = tl.load(
q + off_q1,
)
loaded_k0 = tl.load(
k + off_k0,
)
loaded_k1 = tl.load(
k + off_k1,
)
off_cos_sin = block_token_index * cos_token_stride + dim_range0 * cos_stride
loaded_cos = tl.load(cos + off_cos_sin, mask=(block_token_index < q_total_tokens), other=0.0)
loaded_sin = tl.load(sin + off_cos_sin, mask=(block_token_index < q_total_tokens), other=0.0)
out_q0 = loaded_q0 * loaded_cos - loaded_q1 * loaded_sin
out_q1 = loaded_q0 * loaded_sin + loaded_q1 * loaded_cos
out_k0 = loaded_k0 * loaded_cos - loaded_k1 * loaded_sin
out_k1 = loaded_k0 * loaded_sin + loaded_k1 * loaded_cos # total_tokens, head_num, head_dim
past_kv_seq_len = tl.load(context_lengths + block_token_index) - 1
last_block_idx = past_kv_seq_len // block_size
block_table_ptr = BLOCK_TABLES + block_token_index * bts_stride
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride, mask=(block_token_index < q_total_tokens))
offsets_in_last_block = (past_kv_seq_len % block_size) * cachebs_stride
kv_range0 = (
block_ids * cacheb_stride
+ block_head_index * cacheh_stride
+ offsets_in_last_block
+ dim_range0 * cached_stride
)
kv_range1 = (
block_ids * cacheb_stride
+ block_head_index * cacheh_stride
+ offsets_in_last_block
+ dim_range1 * cached_stride
)
tl.store(
kv_cache + kv_range0,
out_k0,
)
tl.store(
kv_cache + kv_range1,
out_k1,
)
# concat
tl.store(
q + off_q0,
out_q0,
)
tl.store(
q + off_q1,
out_q1,
)
tl.store(
k + off_k0,
out_k0,
)
tl.store(
k + off_k1,
out_k1,
)
@torch.no_grad()
def rotary_embedding(
q: torch.Tensor,
k: torch.Tensor,
@@ -297,12 +413,13 @@ def rotary_embedding(
assert q.size(0) == k.size(0)
BLOCK_HEAD = 4
BLOCK_TOKENS = 4
grid = lambda META: (triton.cdiv(q_head_num, META["BLOCK_HEAD"]), triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]))
if head_dim >= 256:
if head_dim >= 1024:
num_warps = 32
elif head_dim >= 128:
elif head_dim >= 512:
num_warps = 16
elif head_dim >= 256:
num_warps = 8
else:
num_warps = 4
@@ -318,6 +435,10 @@ def rotary_embedding(
cos_token_stride = cos.stride(0)
cos_stride = cos.stride(1)
if k_cache == None:
grid = lambda META: (
triton.cdiv(q_head_num, META["BLOCK_HEAD"]),
triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]),
)
rotary_embedding_kernel[grid](
q,
k,
@@ -339,7 +460,8 @@ def rotary_embedding(
num_warps=num_warps,
)
else:
fused_rotary_embedding_kernel[grid](
grid = (triton.next_power_of_2(q_head_num), q_total_tokens)
fused_rotary_embedding_kernel_v2[grid](
q,
k,
cos,
@@ -365,8 +487,6 @@ def rotary_embedding(
Q_HEAD_NUM=q_head_num,
K_HEAD_NUM=k_head_num,
HEAD_DIM=head_dim,
BLOCK_HEAD=BLOCK_HEAD,
BLOCK_TOKENS=BLOCK_TOKENS,
num_warps=num_warps,
)
return