[Inference] Adapt to Fused rotary (#5348)

* revise rotary embedding

* remove useless print

* adapt

* fix

* add

* fix

* modeling

* fix

* fix

* fix
This commit is contained in:
Jianghai
2024-02-07 11:36:04 +08:00
committed by GitHub
parent 35382a7fbf
commit 9f4ab2eb92
5 changed files with 161 additions and 22 deletions

View File

@@ -3,7 +3,7 @@ import torch
from packaging import version
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
from colossalai.kernel.triton import rotary_embedding
from colossalai.kernel.triton import copy_kv_to_blocked_cache, rotary_embedding
from tests.test_infer.test_ops.triton.kernel_utils import mock_alloc_block_table_and_kvcache_v2
try:
@@ -94,8 +94,8 @@ configs = [
x_names=["num_tokens"],
x_vals=[2**i for i in range(4, 11)],
line_arg="provider",
line_vals=["torch_rotary_emb_func", "triton_rotary_emb_func"],
line_names=["torch_rotary_emb_func", "triton_rotary_emb_func"],
line_vals=["no_fused_rotary_emb_func", "fused_triton_rotary_emb_func"],
line_names=["no_fused_rotary_emb_func", "fused_triton_rotary_emb_func"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"rotary_emb-batch-{BATCH}",
@@ -110,11 +110,16 @@ def benchmark_rotary_emb(
num_tokens: int,
num_kv_heads: int,
):
BATCH_SIZE = 4
SEQ_LEN = num_tokens // BATCH_SIZE
max_num_blocks_per_seq = 8
block_size = 64
warmup = 10
rep = 100
head_dim = 128
head_dim = 256
dtype = torch.float16
q_shape = (num_tokens, num_kv_heads, head_dim)
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
k_shape = (num_tokens, num_kv_heads, head_dim)
@@ -122,11 +127,26 @@ def benchmark_rotary_emb(
cos_shape = (num_tokens, head_dim // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
cache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim)
k_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
v = torch.randn_like(k)
v_cache = torch.zeros_like(k_cache)
past_kv_seq_lengths = torch.tensor([SEQ_LEN - 1 for _ in range(BATCH_SIZE)], dtype=torch.int32, device="cuda")
block_tables = mock_alloc_block_table_and_kvcache_v2(
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
)
new_k = torch.randn((BATCH_SIZE, num_kv_heads, head_dim), dtype=dtype, device="cuda")
new_q = torch.randn_like(new_k)
kv_seq_lengths = past_kv_seq_lengths + 1
block_tables = block_tables.to(device="cuda")
if provider == "torch_rotary_emb_func":
fn = lambda: torch_rotary_emb(q, cos, sin)
elif provider == "triton_rotary_emb_func":
fn = lambda: rotary_embedding(q, k, cos, sin)
if provider == "no_fused_rotary_emb_func":
fn = lambda: [
rotary_embedding(new_q, new_k, cos, sin),
copy_kv_to_blocked_cache(new_k, k_cache, kv_lengths=kv_seq_lengths, block_tables=block_tables),
]
elif provider == "fused_triton_rotary_emb_func":
fn = lambda: rotary_embedding(new_q, new_k, cos, sin, k_cache, block_tables, kv_seq_lengths)
else:
raise ValueError("Undefined provider")
@@ -135,5 +155,5 @@ def benchmark_rotary_emb(
if __name__ == "__main__":
test_rotary_emb(4, 64, 32, 64, torch.float32)
# benchmark_rotary_emb.run(save_path=".",print_data=True)
# test_rotary_emb(4, 64, 32, 64, torch.float32)
benchmark_rotary_emb.run(save_path=".", print_data=True)