mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-21 21:22:04 +00:00
[autoparallel] added liveness analysis (#1516)
* [autoparallel] added liveness analysis * remove memory cost
This commit is contained in:
parent
9a9ef65313
commit
a0436a62ee
@ -2,5 +2,6 @@ from .operator_handler import OperatorHandler
|
|||||||
from .dot_handler import DotHandler
|
from .dot_handler import DotHandler
|
||||||
from .conv_handler import ConvHandler
|
from .conv_handler import ConvHandler
|
||||||
from .sharding_strategy import ShardingStrategy, StrategiesVector
|
from .sharding_strategy import ShardingStrategy, StrategiesVector
|
||||||
|
from .graph_analysis import GraphAnalyser
|
||||||
|
|
||||||
__all__ = ['OperatorHandler', 'DotHandler', 'ConvHandler', 'StrategiesVector', 'ShardingStrategy']
|
__all__ = ['OperatorHandler', 'DotHandler', 'ConvHandler', 'StrategiesVector', 'ShardingStrategy', 'GraphAnalyser']
|
||||||
|
174
colossalai/auto_parallel/solver/graph_analysis.py
Normal file
174
colossalai/auto_parallel/solver/graph_analysis.py
Normal file
@ -0,0 +1,174 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
from torch.fx.node import Node
|
||||||
|
from torch.fx.graph import Graph
|
||||||
|
from torch.fx.graph_module import GraphModule
|
||||||
|
from collections import OrderedDict as ODict
|
||||||
|
from typing import List, OrderedDict, Union, Any
|
||||||
|
from colossalai.fx.passes.utils import get_node_module
|
||||||
|
|
||||||
|
__all__ = ['LiveVariable', 'LiveVariableVector', 'LiveStage', 'GraphAnalyser']
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class LiveVariable:
|
||||||
|
"""
|
||||||
|
LiveVariable is a data structure to store the meta information of a variable for liveness analysis.
|
||||||
|
"""
|
||||||
|
name: str
|
||||||
|
meta: Union[Any, List[Any]]
|
||||||
|
is_inplace: bool
|
||||||
|
|
||||||
|
|
||||||
|
class LiveVariableVector(list):
|
||||||
|
"""
|
||||||
|
LiveVariableVector is a data structure to store the list of LiveVariable objects.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def exists(self, name) -> bool:
|
||||||
|
"""
|
||||||
|
Check if a variable has already existed in the current list by name.
|
||||||
|
"""
|
||||||
|
for var in self:
|
||||||
|
if name == var.name:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
def get(self, name) -> LiveVariable:
|
||||||
|
for var in self:
|
||||||
|
if name == var.name:
|
||||||
|
return var
|
||||||
|
raise KeyError(f"Variable {name} is not found")
|
||||||
|
|
||||||
|
def copy(self) -> "LiveVariableVector":
|
||||||
|
"""
|
||||||
|
Create a copy of this vector
|
||||||
|
"""
|
||||||
|
vector = LiveVariableVector()
|
||||||
|
for var in self:
|
||||||
|
vector.append(var)
|
||||||
|
return vector
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class LiveStage:
|
||||||
|
"""
|
||||||
|
LiveStage is a data structure to record the living variables at this current node.
|
||||||
|
"""
|
||||||
|
name: str
|
||||||
|
node: Node
|
||||||
|
all_live_vars: LiveVariableVector
|
||||||
|
unique_live_vars: LiveVariableVector
|
||||||
|
|
||||||
|
|
||||||
|
class GraphAnalyser:
|
||||||
|
|
||||||
|
def __init__(self, gm: GraphModule):
|
||||||
|
self._gm = gm
|
||||||
|
self._graph = gm.graph
|
||||||
|
|
||||||
|
@property
|
||||||
|
def gm(self) -> GraphModule:
|
||||||
|
"""
|
||||||
|
Return the GraphModule object associated with this analyser.
|
||||||
|
"""
|
||||||
|
return self._gm
|
||||||
|
|
||||||
|
@property
|
||||||
|
def graph(self) -> Graph:
|
||||||
|
"""
|
||||||
|
Return the Graph object associated with this analyser.
|
||||||
|
"""
|
||||||
|
return self._graph
|
||||||
|
|
||||||
|
def liveness_analysis(self) -> OrderedDict[int, LiveStage]:
|
||||||
|
"""
|
||||||
|
Analyse the graph to obtain the variable liveness information. This function returns
|
||||||
|
an ordered dictionary where the key is the compute stage ID and the value is a LivenessStage object.
|
||||||
|
"""
|
||||||
|
compute_nodes = self.graph.nodes
|
||||||
|
liveness_dict = ODict()
|
||||||
|
|
||||||
|
# checked: record all variables created since the first stage
|
||||||
|
# all: record the live variables only exist until the current stage.
|
||||||
|
# this can be different from the `checked list`` as some varialbes may be destroyed prior to this stage.
|
||||||
|
# unique: record the unique live variables only exist until the current stage.
|
||||||
|
# this is different from `all list` as some variables are duplicated.
|
||||||
|
checked_variables = LiveVariableVector()
|
||||||
|
all_live_variables = LiveVariableVector()
|
||||||
|
unique_live_vars = LiveVariableVector()
|
||||||
|
|
||||||
|
def _add_param_or_buf(node, tensor_type):
|
||||||
|
module = get_node_module(node)
|
||||||
|
|
||||||
|
if tensor_type == 'param':
|
||||||
|
iterator = module.named_parameters()
|
||||||
|
elif tensor_type == 'buffer':
|
||||||
|
iterator = module.named_buffers()
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Expected tensor_type to be param or buffer, but got {tensor_type}")
|
||||||
|
|
||||||
|
for name, tensor in iterator:
|
||||||
|
tensor_name = f'{node.name}.{name}'
|
||||||
|
|
||||||
|
if not checked_variables.exists(tensor_name):
|
||||||
|
live_tensor = LiveVariable(name=tensor_name, meta=tensor.to('meta'), is_inplace=False)
|
||||||
|
unique_live_vars.append(live_tensor)
|
||||||
|
checked_variables.append(live_tensor)
|
||||||
|
all_live_variables.append(live_tensor)
|
||||||
|
|
||||||
|
for idx, node in enumerate(compute_nodes):
|
||||||
|
#############################
|
||||||
|
# find new living variables #
|
||||||
|
#############################
|
||||||
|
# detect whether the current op is an in-place op
|
||||||
|
# if it is an in-place op, we would deem it as a duplciate var
|
||||||
|
is_inplace = False
|
||||||
|
if node.op == 'call_function':
|
||||||
|
# check if this is an inplace op such as torch.nn.functional.relu(x, inplace=True)
|
||||||
|
if node.kwargs.get('inplace', False):
|
||||||
|
is_inplace = True
|
||||||
|
elif node.op == 'call_module':
|
||||||
|
# to check if this is an inplace op such as torch.nn.Relu(inplace=True)
|
||||||
|
module = get_node_module(node)
|
||||||
|
if getattr(module, 'inplace', False):
|
||||||
|
is_inplace = True
|
||||||
|
|
||||||
|
# add the output var
|
||||||
|
meta = getattr(node, '_meta_data', None)
|
||||||
|
live_var = LiveVariable(name=node.name, meta=meta, is_inplace=is_inplace)
|
||||||
|
if not is_inplace:
|
||||||
|
unique_live_vars.append(live_var)
|
||||||
|
checked_variables.append(live_var)
|
||||||
|
all_live_variables.append(live_var)
|
||||||
|
|
||||||
|
# add the model parameters
|
||||||
|
if node.op == 'call_module':
|
||||||
|
_add_param_or_buf(node, tensor_type='param')
|
||||||
|
_add_param_or_buf(node, tensor_type='buffer')
|
||||||
|
|
||||||
|
# add this output variable to the checked list
|
||||||
|
checked_variables.append(live_var)
|
||||||
|
|
||||||
|
# check if any input is not checked yet
|
||||||
|
for arg in node.args:
|
||||||
|
arg_name = str(arg)
|
||||||
|
if not checked_variables.exists(arg_name):
|
||||||
|
meta = getattr(node, '_meta_data', None)
|
||||||
|
live_var_from_arg = LiveVariable(name=arg_name, meta=meta, is_inplace=False)
|
||||||
|
all_live_variables.append(live_var_from_arg)
|
||||||
|
checked_variables.append(live_var_from_arg)
|
||||||
|
unique_live_vars.append(live_var_from_arg)
|
||||||
|
|
||||||
|
# TODO: add the logic to remove live variables
|
||||||
|
# this should be completed if we are able to trace the backward compute graph
|
||||||
|
|
||||||
|
# add this stage to liveness dict
|
||||||
|
stage = LiveStage(name=node.name,
|
||||||
|
node=node,
|
||||||
|
all_live_vars=all_live_variables.copy(),
|
||||||
|
unique_live_vars=unique_live_vars.copy())
|
||||||
|
liveness_dict[idx] = stage
|
||||||
|
return liveness_dict
|
||||||
|
|
||||||
|
def get_alias_set(self):
|
||||||
|
pass
|
@ -160,3 +160,20 @@ def assign_bfs_level_to_nodes(graph: Graph):
|
|||||||
new_process_list.extend(get_all_consumers(graph, node))
|
new_process_list.extend(get_all_consumers(graph, node))
|
||||||
nodes_to_process = new_process_list
|
nodes_to_process = new_process_list
|
||||||
current_level += 1
|
current_level += 1
|
||||||
|
|
||||||
|
|
||||||
|
def get_node_module(node) -> torch.nn.Module:
|
||||||
|
"""
|
||||||
|
Find the module associated with the given node.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
node (torch.fx.Node): a torch.fx.Node object in the fx computation graph
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.nn.Module: the module associated with the given node
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert node.graph.owning_module is not None, 'Cannot find the owning_module for node.graph, please make sure the graph is associated with a GraphModule object'
|
||||||
|
assert node.op == 'call_module', f'Expected node.op to be call_module, but found {node.op}'
|
||||||
|
module = node.graph.owning_module.get_submodule(node.target)
|
||||||
|
return module
|
||||||
|
54
tests/test_auto_parallel/test_liveness_analysis.py
Normal file
54
tests/test_auto_parallel/test_liveness_analysis.py
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
import torch.nn as nn
|
||||||
|
import torch
|
||||||
|
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser
|
||||||
|
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||||
|
|
||||||
|
|
||||||
|
class LinearModel(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.linear1 = nn.Linear(4, 4)
|
||||||
|
self.relu = nn.ReLU(inplace=True)
|
||||||
|
self.linear2 = nn.Linear(4, 4)
|
||||||
|
|
||||||
|
def forward(self, x1, x2):
|
||||||
|
x1 = x1 * 2
|
||||||
|
x1 = self.linear1(x1)
|
||||||
|
x1 = self.relu(x1)
|
||||||
|
x1 = self.linear2(x1)
|
||||||
|
out = x1 + x2
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def test_liveness_analysis():
|
||||||
|
model = LinearModel()
|
||||||
|
tracer = ColoTracer()
|
||||||
|
graph = tracer.trace(model,
|
||||||
|
meta_args={
|
||||||
|
'x1': torch.rand(4, 4, device='meta'),
|
||||||
|
'x2': torch.rand(4, 4, device='meta')
|
||||||
|
})
|
||||||
|
gm = ColoGraphModule(root=model, graph=graph, class_name=model.__class__.__name__)
|
||||||
|
|
||||||
|
graph_analyser = GraphAnalyser(gm)
|
||||||
|
liveness_dict = graph_analyser.liveness_analysis()
|
||||||
|
stage_count = len(liveness_dict)
|
||||||
|
|
||||||
|
# 8 stages including input and output
|
||||||
|
assert stage_count == 8
|
||||||
|
|
||||||
|
# a variable named `relu` must exist
|
||||||
|
# and this live var must have inplace = True
|
||||||
|
assert liveness_dict[5].all_live_vars.exists('relu')
|
||||||
|
relu_var = liveness_dict[5].all_live_vars.get('relu')
|
||||||
|
assert relu_var.is_inplace
|
||||||
|
|
||||||
|
# the unique vars must be fewer than the all vars since in-place ops exist
|
||||||
|
all_live_vars = liveness_dict[7].all_live_vars
|
||||||
|
unique_live_vars = liveness_dict[7].unique_live_vars
|
||||||
|
assert len(unique_live_vars) + 1 == len(all_live_vars)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_liveness_analysis()
|
Loading…
Reference in New Issue
Block a user