mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-23 06:00:44 +00:00
add sharded adam
This commit is contained in:
parent
8f74fbd9c9
commit
a109225bc2
@ -6,12 +6,13 @@ import torch.distributed as dist
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from colossalai.context.parallel_mode import ParallelMode
|
from colossalai.context.parallel_mode import ParallelMode
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
from colossalai.engine.ophooks import (ShardGradHook, ShardParamHook, register_ophooks_recursively)
|
from colossalai.engine.ophooks import (ShardGradHook, ShardParamHook,
|
||||||
|
register_ophooks_recursively)
|
||||||
from colossalai.engine.paramhooks import BaseParamHookMgr
|
from colossalai.engine.paramhooks import BaseParamHookMgr
|
||||||
from colossalai.logging import get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
from colossalai.zero.sharded_param import ShardedParam
|
|
||||||
from colossalai.zero.sharded_model.reduce_scatter import ReduceScatterBucketer
|
from colossalai.zero.sharded_model.reduce_scatter import ReduceScatterBucketer
|
||||||
from colossalai.zero.sharded_model.sharded_grad import ShardedGradient
|
from colossalai.zero.sharded_model.sharded_grad import ShardedGradient
|
||||||
|
from colossalai.zero.sharded_param import ShardedParam
|
||||||
from torch.distributed import ProcessGroup
|
from torch.distributed import ProcessGroup
|
||||||
from torch.nn.parameter import Parameter
|
from torch.nn.parameter import Parameter
|
||||||
|
|
||||||
@ -64,10 +65,10 @@ class ShardedModelV2(nn.Module):
|
|||||||
self._cpu_offload: bool = offload_config.get('device', None) == 'cpu' if offload_config else False
|
self._cpu_offload: bool = offload_config.get('device', None) == 'cpu' if offload_config else False
|
||||||
# We find if gradient_predivide_factor != 1.0, there may be wrong precision problem
|
# We find if gradient_predivide_factor != 1.0, there may be wrong precision problem
|
||||||
# So we use 1.0 as the default gradient_predivide_factor
|
# So we use 1.0 as the default gradient_predivide_factor
|
||||||
# However, if you set gradient_predivide_factor to None,
|
# However, if you set gradient_predivide_factor to None, we will set
|
||||||
# we will set gradient_predivide_factor to a value >= 1.0 automatically
|
# gradient_predivide_factor to a value >= 1.0 automatically
|
||||||
self.gradient_predivide_factor: float = \
|
self.gradient_predivide_factor: float = gradient_predivide_factor if \
|
||||||
gradient_predivide_factor if gradient_predivide_factor is not None else \
|
gradient_predivide_factor is not None else \
|
||||||
get_gradient_predivide_factor(self.world_size)
|
get_gradient_predivide_factor(self.world_size)
|
||||||
self.gradient_postdivide_factor: float = self.world_size / self.gradient_predivide_factor
|
self.gradient_postdivide_factor: float = self.world_size / self.gradient_predivide_factor
|
||||||
|
|
||||||
@ -83,6 +84,10 @@ class ShardedModelV2(nn.Module):
|
|||||||
loss.backward()
|
loss.backward()
|
||||||
self._final_backward_hook()
|
self._final_backward_hook()
|
||||||
|
|
||||||
|
def backward_by_grad(self, tensor, grad):
|
||||||
|
torch.autograd.backward(tensors=tensor, grad_tensors=grad)
|
||||||
|
self._final_backward_hook()
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def _final_backward_hook(self) -> None:
|
def _final_backward_hook(self) -> None:
|
||||||
if self._require_backward_grad_sync:
|
if self._require_backward_grad_sync:
|
||||||
@ -110,7 +115,7 @@ class ShardedModelV2(nn.Module):
|
|||||||
"""
|
"""
|
||||||
At the start of :func:`_grad_post_backward_hook`, ``param.grad`` contains the
|
At the start of :func:`_grad_post_backward_hook`, ``param.grad`` contains the
|
||||||
full gradient for the local batch. The reduce-scatter op will save
|
full gradient for the local batch. The reduce-scatter op will save
|
||||||
a single shard of the summed gradient across all
|
a single shard of the summed gradient across all
|
||||||
GPUs to param._sharded_grad. This shard will align with the current GPU rank. For example::
|
GPUs to param._sharded_grad. This shard will align with the current GPU rank. For example::
|
||||||
|
|
||||||
before reduce_scatter:
|
before reduce_scatter:
|
||||||
|
163
colossalai/zero/sharded_optim/sharded_adam.py
Normal file
163
colossalai/zero/sharded_optim/sharded_adam.py
Normal file
@ -0,0 +1,163 @@
|
|||||||
|
from enum import Enum
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.nn as nn
|
||||||
|
from colossalai.amp.naive_amp._fp16_optimizer import DynamicGradScaler
|
||||||
|
from colossalai.context.parallel_mode import ParallelMode
|
||||||
|
from colossalai.core import global_context as gpc
|
||||||
|
from colossalai.nn.optimizer import ColossalaiOptimizer
|
||||||
|
from colossalai.zero.sharded_model import ShardedModelV2
|
||||||
|
from torch import Tensor
|
||||||
|
from torch.distributed import ProcessGroup
|
||||||
|
from torch.optim import Optimizer
|
||||||
|
|
||||||
|
from ._utils import has_inf_or_nan
|
||||||
|
|
||||||
|
|
||||||
|
class OptimState(Enum):
|
||||||
|
SCALED = 1
|
||||||
|
UNSCALED = 2
|
||||||
|
|
||||||
|
|
||||||
|
class ShardedAdam(ColossalaiOptimizer):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
adam_optim: Optimizer,
|
||||||
|
sharded_model: nn.Module,
|
||||||
|
cpu_offload: bool = False,
|
||||||
|
initial_scale: float = 2**32,
|
||||||
|
min_scale: float = 1,
|
||||||
|
growth_factor: float = 2,
|
||||||
|
backoff_factor: float = 0.5,
|
||||||
|
growth_interval: float = 1000,
|
||||||
|
hysteresis: float = 2,
|
||||||
|
max_scale: int = 2**32,
|
||||||
|
dp_process_group: Optional[ProcessGroup] = None,
|
||||||
|
mp_process_group: Optional[ProcessGroup] = None) -> None:
|
||||||
|
super().__init__(adam_optim)
|
||||||
|
self.model: Union[nn.Module, ShardedModelV2] = sharded_model
|
||||||
|
self.model_is_sharded = isinstance(sharded_model, ShardedModelV2)
|
||||||
|
self.state_device = torch.cuda.current_device() if not cpu_offload else torch.device('cpu')
|
||||||
|
self.optim_state: OptimState = OptimState.UNSCALED
|
||||||
|
self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA)
|
||||||
|
self.mp_process_group = mp_process_group or gpc.get_group(ParallelMode.MODEL)
|
||||||
|
# Grad scaler
|
||||||
|
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
|
||||||
|
min_scale=min_scale,
|
||||||
|
growth_factor=growth_factor,
|
||||||
|
backoff_factor=backoff_factor,
|
||||||
|
growth_interval=growth_interval,
|
||||||
|
hysteresis=hysteresis,
|
||||||
|
max_scale=max_scale)
|
||||||
|
self._found_overflow: Tensor = torch.FloatTensor([0]).to(self.state_device)
|
||||||
|
|
||||||
|
# Early state initialization
|
||||||
|
for group in adam_optim.param_groups:
|
||||||
|
for p in group['params']:
|
||||||
|
state_shape = p.shape
|
||||||
|
if hasattr(p, 'ca_attr'):
|
||||||
|
assert p.ca_attr.is_sharded, 'ShardedAdam can be only used with sharded model'
|
||||||
|
# TODO: use payload shape
|
||||||
|
state_shape = p.ca_attr.payload(self.state_device)
|
||||||
|
state = adam_optim.state[p]
|
||||||
|
assert len(state) == 0, 'adam optimizer initialized'
|
||||||
|
state['step'] = 0
|
||||||
|
# Exponential moving average of gradient values
|
||||||
|
state['exp_avg'] = torch.zeros(state_shape,
|
||||||
|
memory_format=torch.preserve_format,
|
||||||
|
dtype=torch.float,
|
||||||
|
device=self.state_device)
|
||||||
|
# Exponential moving average of squared gradient values
|
||||||
|
state['exp_avg_sq'] = torch.zeros(state_shape,
|
||||||
|
memory_format=torch.preserve_format,
|
||||||
|
dtype=torch.float,
|
||||||
|
device=self.state_device)
|
||||||
|
if group['amsgrad']:
|
||||||
|
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||||
|
state['max_exp_avg_sq'] = torch.zeros(state_shape,
|
||||||
|
memory_format=torch.preserve_format,
|
||||||
|
dtype=torch.float,
|
||||||
|
device=self.state_device)
|
||||||
|
|
||||||
|
def step(self, *args, **kwargs):
|
||||||
|
# unscale grads if scaled
|
||||||
|
if self.optim_state == OptimState.SCALED:
|
||||||
|
self._unscale_grads()
|
||||||
|
|
||||||
|
found_inf = self._check_overflow()
|
||||||
|
self.grad_scaler.update(found_inf)
|
||||||
|
|
||||||
|
if found_inf:
|
||||||
|
self.zero_grad()
|
||||||
|
return
|
||||||
|
|
||||||
|
# Write payload back to p.data
|
||||||
|
for group in self.optim.param_groups:
|
||||||
|
for p in group['params']:
|
||||||
|
data = p.data
|
||||||
|
if hasattr(p, 'ca_attr'):
|
||||||
|
data = p.ca_attr.payload(self.state_device)
|
||||||
|
if torch.is_floating_point(data) and data.dtype != torch.float:
|
||||||
|
data = data.to(torch.float)
|
||||||
|
p.data = data
|
||||||
|
ret = self.optim.step(*args, **kwargs)
|
||||||
|
# Set p.data to None
|
||||||
|
for group in self.optim.param_groups:
|
||||||
|
for p in group['params']:
|
||||||
|
p.data = None
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def backward(self, loss: Tensor) -> None:
|
||||||
|
loss = self.loss_scale * loss
|
||||||
|
self.optim_state = OptimState.SCALED
|
||||||
|
if self.model_is_sharded:
|
||||||
|
self.model.backward(loss)
|
||||||
|
else:
|
||||||
|
super().backward(loss)
|
||||||
|
|
||||||
|
def backward_by_grad(self, tensor: Tensor, grad: Tensor) -> None:
|
||||||
|
if self.model_is_sharded:
|
||||||
|
self.model.backward_by_grad(tensor, grad)
|
||||||
|
else:
|
||||||
|
super().backward_by_grad(tensor, grad)
|
||||||
|
|
||||||
|
def clip_grad_norm(self, model: nn.Module, max_norm: float):
|
||||||
|
if self.optim_state == OptimState.SCALED:
|
||||||
|
self._unscale_grads()
|
||||||
|
return super().clip_grad_norm(model, max_norm)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def loss_scale(self):
|
||||||
|
return self.grad_scaler.scale
|
||||||
|
|
||||||
|
def _check_overflow(self):
|
||||||
|
# clear previous overflow record
|
||||||
|
self._found_overflow.fill_(0.0)
|
||||||
|
|
||||||
|
# check for overflow
|
||||||
|
for group in self.optim.param_groups:
|
||||||
|
for p in group['params']:
|
||||||
|
if has_inf_or_nan(p.grad):
|
||||||
|
self._found_overflow.fill_(1.0)
|
||||||
|
break
|
||||||
|
|
||||||
|
# all-reduce across dp group
|
||||||
|
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self.dp_process_group)
|
||||||
|
|
||||||
|
# all-reduce over model parallel group
|
||||||
|
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self.mp_process_group)
|
||||||
|
|
||||||
|
if self._found_overflow.item() > 0:
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _unscale_grads(self):
|
||||||
|
assert self.optim_state == OptimState.SCALED
|
||||||
|
for group in self.optim.param_groups:
|
||||||
|
for p in group['params']:
|
||||||
|
if p.grad is not None:
|
||||||
|
p.grad.data.div_(self.loss_scale)
|
||||||
|
self.optim_state = OptimState.UNSCALED
|
Loading…
Reference in New Issue
Block a user