[zero] test gradient accumulation (#1964)

* [zero] fix memory leak for zero2

* [zero] test gradient accumulation

* [zero] remove grad clip test
This commit is contained in:
HELSON 2022-11-29 13:00:30 +08:00 committed by GitHub
parent b0936e4a44
commit a1ce02d740
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 317 additions and 268 deletions

View File

@ -0,0 +1,19 @@
import random
import numpy as np
import torch
def seed_all(seed, cuda_deterministic=False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True

View File

@ -1,11 +1,13 @@
import math
import torch
import torch.distributed as dist
from torch._six import inf
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import is_model_parallel_parameter
import torch.distributed as dist
def flatten(input_):
@ -99,19 +101,24 @@ def split_half_float_double(tensor_list):
return buckets
def reduce_tensor(tensor, dtype, dst_rank=None, parallel_mode=ParallelMode.DATA):
def reduce_tensor(tensor, dtype=None, dst_rank=None, parallel_mode=ParallelMode.DATA):
"""
Reduce the tensor in the data parallel process group
:param tensor: A tensor object to reduce/all-reduce
:param dtype: The data type used in communication
:param dst_rank: The source rank for reduce. If dst_rank is None,
:param parallel_mode: Communication parallel mode
all-reduce will be used instead of reduce. Default is None.
:type tensor: torch.Tensor
:type dtype: torch.dtype
:type dtype: torch.dtype, optional
:type dst_rank: int, optional
:type parallel_mode: ParallelMode, optional
"""
# use the original dtype
if dtype is None:
dtype = tensor.dtype
# cast the data to specified dtype for reduce/all-reduce
if tensor.dtype != dtype:
@ -139,6 +146,7 @@ def reduce_tensor(tensor, dtype, dst_rank=None, parallel_mode=ParallelMode.DATA)
local_rank = gpc.get_local_rank(parallel_mode)
if use_all_reduce or dst_rank == local_rank:
tensor.copy_(tensor_to_reduce)
return tensor

View File

@ -44,12 +44,12 @@ class LowLevelZeroOptimizer(ColossalaiOptimizer):
max_scale: int = 2**32,
# grad clipping
clip_grad_norm=2.0,
clip_grad_norm=0.0,
verbose=False,
# communication
reduce_bucket_size=50000000,
communication_dtype=torch.float16,
reduce_bucket_size=1024 * 1024,
communication_dtype=None,
overlap_communication=False,
# stage 2
@ -58,7 +58,10 @@ class LowLevelZeroOptimizer(ColossalaiOptimizer):
mp_parallel_mode=ParallelMode.MODEL,
# cpu offload
cpu_offload=False):
cpu_offload=False,
# forced dtype
forced_dtype=None):
# TODO: add support for
# 1. fp16 master weights
@ -112,6 +115,13 @@ class LowLevelZeroOptimizer(ColossalaiOptimizer):
# gradient clipping
self._clip_grad_norm = clip_grad_norm
if forced_dtype:
for group in self._optimizer.param_groups:
group_params = group['params']
for param in group_params:
param.data = param.data.to(forced_dtype)
self._dtype = forced_dtype
# check argument conflict
self._sanity_checks()
@ -225,17 +235,21 @@ class LowLevelZeroOptimizer(ColossalaiOptimizer):
fp32_partition_grad = torch.zeros_like(fp32_partition_param)
fp32_partition_param.grad = fp32_partition_grad
# we do not need log information for optimizer, so comment them
# update the parameter with zero gradients for initialization of optimizer states
self._optimizer.step()
# self._optimizer.step()
# remove the grad of the paramter to save memory
for group_id, fp32_flat_tensor in self._fp32_flat_param_groups_of_current_rank.items():
fp32_flat_tensor.grad = None
# for group_id, fp32_flat_tensor in self._fp32_flat_param_groups_of_current_rank.items():
# fp32_flat_tensor.grad = None
def _sanity_checks(self):
assert torch.cuda.is_available(), 'CUDA is required'
assert self._dtype == torch.float16, \
f'Parameters are expected to be of type torch.float16, but got {self._dtype}'
for param_group in self._optimizer.param_groups:
group_params = param_group['params']
for param in group_params:
assert param.dtype == self._dtype, \
f"Parameters are expected to have the same dtype `{self._dtype}`, but got `{param.dtype}`"
###########################################################
# Backward Reduction Hook
@ -389,6 +403,18 @@ class LowLevelZeroOptimizer(ColossalaiOptimizer):
loss = self.loss_scale * loss
loss.backward(retain_graph=retain_graph)
# finish gradient reduction
if not self._partition_grads:
self._reduce_grad_stage1()
else:
# TODO: support async comm in reduce
self._reduce_grad_stage2()
# clear reduced grads
if self._overlap_communication:
torch.cuda.synchronize()
self._param_store.clear_grads_of_previous_reduced_params()
def zero_grad(self, set_to_none=True):
"""
Set parameter gradients to zero. If set_to_none = True, gradient
@ -465,7 +491,7 @@ class LowLevelZeroOptimizer(ColossalaiOptimizer):
# update fp16 partition updated by the current rank
for group_id in range(len(self._fp16_param_groups)):
fp16_param = self._param_store.get_flat_fp16_param_by_rank_group(rank=self._local_rank, group_id=group_id)
fp32_param = self._fp32_flat_param_groups_of_current_rank[group_id].to(fp16_param.device)
fp32_param = self._fp32_flat_param_groups_of_current_rank[group_id]
fp16_param.data.copy_(fp32_param)
# broadcast the updated model weights
@ -524,22 +550,11 @@ class LowLevelZeroOptimizer(ColossalaiOptimizer):
############################
def sync_grad(self):
if not self._partition_grads:
self._reduce_grad_stage1()
else:
# TODO: support async comm in reduce
self._reduce_grad_stage2()
# update param already reduced flag
reduction_states = self._param_store.get_param_reduction_states()
for tensor, state in reduction_states.items():
reduction_states[tensor] = False
# clear reduced grads
if self._overlap_communication:
torch.cuda.synchronize()
self._param_store.clear_grads_of_previous_reduced_params()
# accumulate gradient
avg_gradients = self._grad_store._averaged_gradients
for group_id in range(self.num_param_groups):

View File

@ -0,0 +1,167 @@
import copy
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.testing.random import seed_all
from colossalai.utils import free_port
from colossalai.zero import LowLevelZeroOptimizer
class TestModel(nn.Module):
def __init__(self):
super(TestModel, self).__init__()
self.linear1 = nn.Linear(128, 256)
self.linear2 = nn.Linear(256, 512)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
def exam_zero_1_2_grad_acc():
local_rank = torch.distributed.get_rank()
seed_all(2009)
# create model
zero1_model = TestModel().cuda()
zero2_model = copy.deepcopy(zero1_model)
# create optimizer
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1)
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1)
zero1_optimizer = LowLevelZeroOptimizer(zero1_optimizer,
overlap_communication=True,
initial_scale=32,
clip_grad_norm=1.0,
verbose=True)
zero2_optimizer = LowLevelZeroOptimizer(zero2_optimizer,
overlap_communication=True,
partition_grad=True,
initial_scale=32,
clip_grad_norm=1.0)
# create data
seed_all(2021 + local_rank)
input_data1 = torch.randn(32, 128).cuda()
input_data2 = torch.randn(32, 128).cuda()
def fwd_bwd_func(number, cur_data):
# zero-dp forward
zero1_output = zero1_model(cur_data)
zero2_output = zero2_model(cur_data)
assert torch.equal(zero1_output, zero2_output)
# zero-dp backward
zero1_optimizer.backward(zero1_output.sum().float())
zero2_optimizer.backward(zero2_output.sum().float())
for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()):
if z2p.grad is not None:
# print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad)))
assert torch.equal(z1p.grad, z2p.grad)
zero1_optimizer.sync_grad()
zero2_optimizer.sync_grad()
fwd_bwd_func(0, input_data1)
fwd_bwd_func(1, input_data2)
# step
zero1_optimizer.step()
zero2_optimizer.step()
# check updated param
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
assert torch.equal(z1p.data, z2p.data)
def exam_zero_1_grad_acc():
local_rank = torch.distributed.get_rank()
grad_scale = 32
seed_all(2008)
# create models
zero_model = TestModel()
torch_model = copy.deepcopy(zero_model)
zero_model = zero_model.cuda()
torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0)
# create optimizer
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1)
# we only test stage 1 here
# in `check_sharded_param_consistency.py`, we will test whether
# level 1 and 2 will produce exactly the same results
zero_optimizer = LowLevelZeroOptimizer(zero_optimizer,
overlap_communication=False,
initial_scale=grad_scale,
reduce_bucket_size=262144,
clip_grad_norm=1.0)
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=1)
# create data
seed_all(2022 + local_rank)
input_data1 = torch.randn(32, 128).cuda()
input_data2 = torch.randn(32, 128).cuda()
def fwd_bwd_func(number, cur_data, check_flag):
# zero-dp forward
zero_output = zero_model(cur_data)
# torch-ddp forward
torch_output = torch_model(cur_data)
assert torch.equal(zero_output, torch_output)
# zero-dp backward
zero_optimizer.backward(zero_output.sum().float())
# torch-ddp backward
torch_output.sum().backward()
if check_flag:
# check grad
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
unscale_grad = z1p.grad / grad_scale
# print(n, p.shape, torch.max(torch.abs(p.grad - unscale_grad)))
assert torch.equal(p.grad, unscale_grad)
zero_optimizer.sync_grad()
fwd_bwd_func(0, input_data1, True)
fwd_bwd_func(1, input_data2, False)
zero_optimizer.step()
torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0)
torch_optimizer.step()
# check updated param
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
# print(n, p.shape, torch.max(p.data), torch.max(z1p.data), torch.max(torch.abs(p.data - z1p.data)))
assert_close(p.data, z1p.data)
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
exam_zero_1_grad_acc()
# exam_zero_1_2_grad_acc()
@pytest.mark.dist
def test_grad_accumulation():
world_size = 2
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_grad_accumulation()

View File

@ -1,161 +0,0 @@
import copy
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.utils import free_port
from colossalai.zero import LowLevelZeroOptimizer
def check_equal(a, b, rtol=1e-4, atol=1e-3):
"""
This function checks if two tensors are equal within tolerance
"""
assert torch.allclose(a.float(), b.float(), rtol=rtol, atol=atol), f'a = {a}, b = {b}'
def check_completely_equal(a, b):
"""
This function checks if two tensors are completely equal
"""
assert torch.all(a == b), f'a = {a}, b = {b}'
class TestModel(nn.Module):
def __init__(self):
super(TestModel, self).__init__()
self.linear1 = nn.Linear(128, 256)
self.linear2 = nn.Linear(256, 512)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
def exam_zero_1_2_grad_clip():
# create model
zero1_model = TestModel().cuda().half()
zero2_model = copy.deepcopy(zero1_model)
# create optimizer
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=0.001)
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=0.001)
zero1_optimizer = LowLevelZeroOptimizer(zero1_optimizer,
overlap_communication=True,
initial_scale=32,
clip_grad_norm=1.0,
verbose=True)
zero2_optimizer = LowLevelZeroOptimizer(zero2_optimizer,
overlap_communication=True,
partition_grad=True,
initial_scale=32,
clip_grad_norm=1.0)
# create
input_data = torch.rand(32, 128).cuda().half()
# forward
zero1_output = zero1_model(input_data)
zero2_output = zero2_model(input_data)
check_completely_equal(zero1_output, zero2_output)
# backward
zero1_optimizer.backward(zero1_output.mean().float())
zero2_optimizer.backward(zero2_output.mean().float())
# check grad
# as this param is small, the backward reduction
# will not be fired
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
check_completely_equal(z1p.grad, z2p.grad)
# step
zero1_optimizer.sync_grad()
zero2_optimizer.sync_grad()
# step
zero1_optimizer.step()
zero2_optimizer.step()
# check updated param
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
check_completely_equal(z1p.data, z2p.data)
def exam_zero_1_grad_clip():
# create models
zero_model = TestModel()
torch_model = copy.deepcopy(zero_model)
zero_model = zero_model.cuda().half()
torch_model = DDP(torch_model.cuda())
# create optimizer
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=0.001)
# we only test stage 1 here
# in `check_sharded_param_consistency.py`, we will test whether
# level 1 and 2 will produce exactly the same results
zero_optimizer = LowLevelZeroOptimizer(zero_optimizer,
overlap_communication=True,
initial_scale=1,
clip_grad_norm=1.0)
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=0.001)
# create
input_data = torch.rand(32, 128).cuda()
# zero-dp forward
zero_output = zero_model(input_data.half())
# torch-ddp forward
torch_output = torch_model(input_data)
check_equal(zero_output, torch_output)
# zero-dp backward
zero_optimizer.backward(zero_output.mean().float())
# torch-ddp backward
torch_output.mean().backward()
# check grad
for p, z1p in zip(torch_model.parameters(), zero_model.parameters()):
check_equal(p.grad, z1p.grad)
# zero-dp step
zero_optimizer.sync_grad()
zero_optimizer.step()
# torch ddp step
torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0)
torch_optimizer.step()
# check updated param
for p, z1p in zip(torch_model.parameters(), zero_model.parameters()):
check_equal(p.data, z1p.data, atol=5e-4)
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
exam_zero_1_2_grad_clip()
exam_zero_1_grad_clip()
@pytest.mark.dist
def test_grad_clip():
world_size = 2
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_grad_clip()

View File

@ -6,27 +6,41 @@ import torch
import torch.multiprocessing as mp
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.testing.random import seed_all
from colossalai.utils import free_port
from colossalai.zero import LowLevelZeroOptimizer
def check_equal(a, b):
"""
This function checks if two tensors are equal within tolerance
"""
assert torch.allclose(a.float(), b.float(), rtol=1e-4, atol=1e-3), f'a = {a}, b = {b}'
class TestModel(nn.Module):
def __init__(self):
super(TestModel, self).__init__()
self.linear1 = nn.Linear(128, 256)
self.linear2 = nn.Linear(256, 512)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
def check_completely_equal(a, b):
"""
This function checks if two tensors are completely equal
"""
assert torch.all(a == b), f'a = {a}, b = {b}'
def half_close(a, b, loose=False):
rtol = None
atol = None
if loose:
rtol = 5e-2
atol = 5e-4
a = a.detach().half()
b = b.detach().half()
assert_close(a, b, rtol=rtol, atol=atol)
def check_sharded_param_consistency():
def exam_zero_1_2():
"""
In this test, we want to test whether zero stage 1 and 2
deliver the same numerical results despite different communication
@ -37,67 +51,54 @@ def check_sharded_param_consistency():
pg: partition gradients and optimizer states
"""
# create layers
oss_linear1 = nn.Linear(128, 256)
oss_linear2 = nn.Linear(256, 512)
local_rank = torch.distributed.get_rank()
seed_all(2001)
# create model
oss_model = nn.Sequential(oss_linear1, oss_linear2)
pg_model = copy.deepcopy(oss_model)
oss_model = oss_model.cuda().half()
pg_model = pg_model.cuda().half()
zero1_model = TestModel().cuda()
zero2_model = copy.deepcopy(zero1_model)
# create optimizer
oss_optimizer = torch.optim.Adam(oss_model.parameters(), lr=0.001)
pg_optimizer = torch.optim.Adam(pg_model.parameters(), lr=0.001)
oss_optimizer = LowLevelZeroOptimizer(oss_optimizer,
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1)
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1)
zero1_optimizer = LowLevelZeroOptimizer(zero1_optimizer,
overlap_communication=True,
initial_scale=1,
clip_grad_norm=0.0)
pg_optimizer = LowLevelZeroOptimizer(pg_optimizer,
initial_scale=128,
verbose=True)
zero2_optimizer = LowLevelZeroOptimizer(zero2_optimizer,
overlap_communication=True,
partition_grad=True,
initial_scale=1,
clip_grad_norm=0.0)
initial_scale=128)
# create data
seed_all(2001 + local_rank)
input_data = torch.randn(32, 128).cuda()
# create
input_data = torch.rand(32, 128).cuda().half()
zero1_output = zero1_model(input_data)
zero2_output = zero2_model(input_data)
assert torch.equal(zero1_output, zero2_output)
# forward
oss_output = oss_model(input_data)
pg_output = pg_model(input_data)
check_completely_equal(oss_output, pg_output)
# zero-dp backward
zero1_optimizer.backward(zero1_output.mean().float())
zero2_optimizer.backward(zero2_output.mean().float())
# backward
oss_optimizer.backward(oss_output.mean().float())
pg_optimizer.backward(pg_output.mean().float())
for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()):
if z2p.grad is not None:
# print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad)))
assert torch.equal(z1p.grad, z2p.grad)
# check grad
# as this param is small, the backward reduction
# will not be fired
oss_linear1_grad = oss_model[0].weight.grad
oss_linear2_grad = oss_model[1].weight.grad
pg_linear1_grad = pg_model[0].weight.grad
pg_linear2_grad = pg_model[1].weight.grad
check_completely_equal(oss_linear1_grad, pg_linear1_grad)
check_completely_equal(oss_linear2_grad, pg_linear2_grad)
zero1_optimizer.sync_grad()
zero2_optimizer.sync_grad()
# step
oss_optimizer.sync_grad()
pg_optimizer.sync_grad()
# step
oss_optimizer.step()
pg_optimizer.step()
zero1_optimizer.step()
zero2_optimizer.step()
# check updated param
check_completely_equal(oss_model[0].weight, pg_model[0].weight)
check_completely_equal(oss_model[1].weight, pg_model[1].weight)
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
assert torch.equal(z1p.data, z2p.data)
def check_sharded_optim_against_torch_ddp():
def exam_zero_1_torch_ddp():
"""
In this test, two pairs of model and optimizers are created.
1. zero: use sharded optimizer and fp16 parameters
@ -106,20 +107,22 @@ def check_sharded_optim_against_torch_ddp():
We feed these two sets of models with the same input and check if the
differences in model output and updated parameters are within tolerance.
"""
local_rank = torch.distributed.get_rank()
seed_all(1453)
# create layer
zero_linear1 = nn.Linear(128, 256)
zero_linear2 = nn.Linear(256, 512)
# create model
zero_model = nn.Sequential(zero_linear1, zero_linear2)
# create models
zero_model = TestModel()
torch_model = copy.deepcopy(zero_model)
zero_model = zero_model.cuda().half()
torch_model = DDP(torch_model.cuda())
# torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0)
torch_model = torch_model.cuda()
# for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
# half_close(p.data, z1p.data)
# create optimizer
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=0.001)
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
# we only test stage 1 here
# in `check_sharded_param_consistency.py`, we will test whether
@ -127,10 +130,11 @@ def check_sharded_optim_against_torch_ddp():
zero_optimizer = LowLevelZeroOptimizer(zero_optimizer,
overlap_communication=True,
initial_scale=1,
clip_grad_norm=0.0)
reduce_bucket_size=262144)
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=0.001)
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
seed_all(1453 + local_rank)
# create
input_data = torch.rand(32, 128).cuda()
@ -139,7 +143,7 @@ def check_sharded_optim_against_torch_ddp():
# torch-ddp forward
torch_output = torch_model(input_data)
check_equal(zero_output, torch_output)
half_close(zero_output, torch_output, loose=True)
# zero-dp backward
zero_optimizer.backward(zero_output.mean().float())
@ -148,12 +152,8 @@ def check_sharded_optim_against_torch_ddp():
torch_output.mean().backward()
# check grad
zero_linear1_grad = zero_model[0].weight.grad
zero_linear2_grad = zero_model[1].weight.grad
torch_linear1_grad = torch_model.module[0].weight.grad
torch_linear2_grad = torch_model.module[1].weight.grad
check_equal(zero_linear1_grad, torch_linear1_grad)
check_equal(zero_linear2_grad, torch_linear2_grad)
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
half_close(p.grad, z1p.grad, loose=True)
# zero-dp step
zero_optimizer.sync_grad()
@ -163,23 +163,24 @@ def check_sharded_optim_against_torch_ddp():
torch_optimizer.step()
# check updated param
check_equal(zero_model[0].weight, torch_model.module[0].weight)
check_equal(zero_model[1].weight, torch_model.module[1].weight)
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
# print(n, torch.max(torch.abs(p.data - z1p.data)))
half_close(p.data, z1p.data, loose=True)
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
check_sharded_optim_against_torch_ddp()
check_sharded_param_consistency()
exam_zero_1_torch_ddp()
exam_zero_1_2()
@pytest.mark.dist
def test_sharded_optim():
def test_zero_1_2():
world_size = 2
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_sharded_optim()
test_zero_1_2()