mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 01:55:12 +00:00
[autoparallel] Patch meta information of torch.nn.Embedding
(#2760)
* [autoparallel] embedding metainfo * [autoparallel] fix function name in test_activation_metainfo * [autoparallel] undo changes in activation metainfo and related tests
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
from .activation import *
|
||||
from .binary_elementwise_ops import *
|
||||
from .conv import *
|
||||
from .embedding import *
|
||||
from .linear import *
|
||||
from .norm import *
|
||||
from .pooling import *
|
||||
|
@@ -0,0 +1,52 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
|
||||
from colossalai.fx.profiler.memory_utils import activation_size
|
||||
from colossalai.fx.profiler.opcount import flop_mapping
|
||||
|
||||
from ..registry import meta_register
|
||||
|
||||
__all__ = ["embedding_meta_info"]
|
||||
|
||||
|
||||
@meta_register.register(torch.nn.Embedding)
|
||||
def embedding_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""torch.nn.Embedding metainfo generator
|
||||
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
||||
"""
|
||||
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
|
||||
weight_tensor = next(filter(lambda x: x.type == OperationDataType.PARAM, args)).data
|
||||
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
||||
|
||||
# compute cost
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten.embedding.default]([weight_tensor, input_tensor], [output_tensor])
|
||||
bwd_compute_cost = flop_mapping[torch.ops.aten.embedding_dense_backward.default]([output_tensor, weight_tensor],
|
||||
[weight_tensor])
|
||||
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# memory cost
|
||||
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
|
||||
# NOTE: during the backward phase of torch.nn.Embedding, it seems when the input is large enough, it will
|
||||
# have a temp memory which is kind of weird and we don't know the reason yet, so currently we just assume
|
||||
# that there will be no temp memory, as the temp memory is significantly smaller than the gradient memory
|
||||
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
|
||||
parameter=0,
|
||||
temp=0,
|
||||
buffer=0)
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size([weight_tensor]), parameter=0, temp=0, buffer=0)
|
||||
|
||||
total_memory_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation)
|
||||
|
||||
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_memory_cost)
|
||||
|
||||
# store fwd_in, fwd_buffer, fwd_out
|
||||
fwd_in = [torch.zeros_like(input_tensor)]
|
||||
fwd_buffer = []
|
||||
fwd_out = [torch.zeros_like(output_tensor)]
|
||||
|
||||
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
|
Reference in New Issue
Block a user