[zero] adapt for no-leaf module in zero (#535)

only process module's own parameters in Zero context

add zero hooks for all modules that contrain parameters

gather parameters only belonging to module itself
This commit is contained in:
HELSON
2022-03-28 17:42:18 +08:00
committed by GitHub
parent 705f56107c
commit a30e2b4c24
7 changed files with 70 additions and 26 deletions

View File

@@ -64,18 +64,13 @@ class PostBackwardFunction(torch.autograd.Function):
def register_ophooks_recursively(module: torch.nn.Module, ophook_list: List[BaseOpHook] = None, name: str = ""):
r"""Recursilvely register pre/post hooks for all submodules in the module in FWD and BWD."""
assert isinstance(module, torch.nn.Module)
has_children = False
# Add hooks for submodules
for child_name, child in module.named_children():
register_ophooks_recursively(child, ophook_list, name + child_name)
has_children = True
# Early return on modules with no parameters or buffers that
# are not in their children.
if (len(list(module.named_parameters(recurse=False))) == 0 and len(list(module.named_buffers(recurse=False))) == 0):
return
# return if the module has not childern.
if has_children:
# Early return on modules with no parameters.
if len(list(module.parameters(recurse=False))) == 0:
return
if ophook_list is not None:

View File

@@ -31,11 +31,11 @@ class ZeroHook(BaseOpHook):
def pre_fwd_exec(self, module: torch.nn.Module, *args):
tensor_list = []
for param in module.parameters():
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
self.shard_strategy.gather(tensor_list, self.process_group)
for param in module.parameters():
for param in module.parameters(recurse=False):
colo_model_data_tensor_move_inline(param.col_attr.sharded_data_tensor, self.computing_device)
param.data = param.col_attr.sharded_data_tensor.payload
@@ -44,20 +44,20 @@ class ZeroHook(BaseOpHook):
def post_fwd_exec(self, module: torch.nn.Module, *args):
tensor_list = []
for param in module.parameters():
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
self.shard_strategy.shard(tensor_list, self.process_group)
for param in module.parameters():
for param in module.parameters(recurse=False):
param.col_attr.remove_torch_payload()
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
tensor_list = []
for param in module.parameters():
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
self.shard_strategy.gather(tensor_list, self.process_group)
for param in module.parameters():
for param in module.parameters(recurse=False):
colo_model_data_tensor_move_inline(param.col_attr.sharded_data_tensor, self.computing_device)
param.data = param.col_attr.sharded_data_tensor.payload
# Store local accumulated grad shard
@@ -77,11 +77,11 @@ class ZeroHook(BaseOpHook):
def post_bwd_exec(self, module: torch.nn.Module, input):
tensor_list = []
for param in module.parameters():
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
self.shard_strategy.shard(tensor_list, self.process_group)
for param in module.parameters():
for param in module.parameters(recurse=False):
param.col_attr.remove_torch_payload()
def pre_iter(self):

View File

@@ -12,6 +12,12 @@ from torch.distributed import ProcessGroup
from colossalai.logging import get_dist_logger, disable_existing_loggers
def _substitute_init_recursively(cls, func):
for subcls in cls.__subclasses__():
_substitute_init_recursively(subcls, func)
func(subcls)
class InsertPostInitMethodToModuleSubClasses(object):
def __init__(self):
@@ -41,8 +47,7 @@ class InsertPostInitMethodToModuleSubClasses(object):
# Replace .__init__() for all existing subclasses of torch.nn.Module
# Excution self._post_init_method after the default init function.
for subclass in torch.nn.modules.module.Module.__subclasses__():
_enable_class(subclass)
_substitute_init_recursively(torch.nn.modules.module.Module, _enable_class)
# holding on to the current __init__subclass__ for exit
torch.nn.modules.module.Module._old_init_subclass = (torch.nn.modules.module.Module.__init_subclass__)
@@ -57,8 +62,7 @@ class InsertPostInitMethodToModuleSubClasses(object):
cls.__init__ = cls._old_init
# Replace .__init__() for all existing subclasses of torch.nn.Module
for subclass in torch.nn.modules.module.Module.__subclasses__():
_disable_class(subclass)
_substitute_init_recursively(torch.nn.modules.module.Module, _disable_class)
# Replace .__init__() for future subclasses of torch.nn.Module
torch.nn.modules.module.Module.__init_subclass__ = (torch.nn.modules.module.Module._old_init_subclass)
@@ -144,7 +148,7 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
The function to call at the end of the constructor of each module.
NOTE() The module may be passed to this function multiple times.
"""
for param in module.parameters():
for param in module.parameters(recurse=False):
# avoid adapting a param to ShardedParam twice
if hasattr(param, 'col_attr'):
continue
@@ -173,7 +177,7 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
# We must cast buffers
# If we use BN, buffers may be on CPU and Float
# We must cast them
for buffer in module.buffers():
for buffer in module.buffers(recurse=False):
buffer.data = buffer.data.to(device=torch.cuda.current_device())
if self.convert_fp16:
buffer.data = cast_tensor_to_fp16(buffer.data)