[Inference/SpecDec] Add Speculative Decoding Implementation (#5423)

* fix flash decoding mask during verification

* add spec-dec

* add test for spec-dec

* revise drafter init

* remove drafter sampling

* retire past kv in drafter

* (trivial) rename attrs

* (trivial) rename arg

* revise how we enable/disable spec-dec
This commit is contained in:
Yuanheng Zhao
2024-03-11 09:51:42 +08:00
committed by Yuanheng
parent 5a9b05f7b2
commit a37f82629d
11 changed files with 484 additions and 133 deletions

View File

@@ -12,6 +12,7 @@ from colossalai.inference.batch_bucket import BatchBucket
from colossalai.inference.config import InferenceConfig, InputMetaData
from colossalai.inference.graph_runner import CUDAGraphRunner
from colossalai.inference.modeling.policy import model_policy_map
from colossalai.inference.spec import Drafter
from colossalai.inference.struct import Sequence
from colossalai.logging import get_dist_logger
from colossalai.pipeline.stage_manager import PipelineStageManager
@@ -52,19 +53,26 @@ class InferenceEngine:
verbose: bool = False,
model_policy: Policy = None,
) -> None:
assert inference_config, "Please provide inference_config."
assert tokenizer, "Please provide a tokenizer, either a defined one or str"
self.inference_config = inference_config
self.model_config = model.config
self.model = model
self.device = torch.device("cuda")
self.dtype = inference_config.dtype
self.tokenizer = tokenizer
self.tokenizer.pad_token = self.tokenizer.eos_token
self.generation_config = inference_config.to_generation_config(self.model_config)
self.high_precision = inference_config.high_precision
model = model.eval()
model = model.cuda()
model.to(self.dtype)
self._verify_args()
self.generation_config = inference_config.to_generation_config(self.model_config)
model.eval()
model = model.to(self.dtype)
model = model.to(self.device)
# Model and relatable attrs of speculative decoding will be set by `enable_spec_dec`
self.use_spec_dec = False
self.drafter_model = None
self.drafter = None
self.n_spec_tokens = self.inference_config.max_n_spec_tokens
if model_policy is None:
if self.inference_config.pad_input:
@@ -174,21 +182,18 @@ class InferenceEngine:
if self.verbose:
self.logger.info(f"CUDA Graph capture time: {t_capture_end - t_capture_begin} s")
def _verify_config(self) -> None:
"""
Verify the input config
"""
def _verify_args(self) -> None:
"""Verify the input args"""
if not isinstance(self.inference_config, InferenceConfig):
raise TypeError("Invalid type of inference config provided.")
if not isinstance(self.model, nn.Module):
raise TypeError(f"the model type must be nn.Module, but got {type(self.model)}")
if not isinstance(self.tokenizer, PreTrainedTokenizerFast) and not isinstance(
self.tokenizer, PreTrainedTokenizer
):
if not isinstance(self.tokenizer, (PreTrainedTokenizerFast, PreTrainedTokenizer)):
raise TypeError(
f"the tokenizer type must be PreTrainedTokenizer or PreTrainedTokenizerFast, but got {type(self.tokenizer)}"
)
assert (
self.model.__class__.__name__ in _supported_models
), f"Model {self.model.__class__.__name__} is not supported."
if self.model.__class__.__name__ not in _supported_models:
raise ValueError(f"Model {self.model.__class__.__name__} is not supported.")
def _shardformer(
self,
@@ -224,6 +229,138 @@ class InferenceEngine:
shard_model, _ = shardformer.optimize(model, model_policy)
return shard_model
def enable_spec_dec(self, drafter_model: nn.Module = None, n_spec_tokens: int = None) -> None:
"""Initialize drafter (if it has not yet), and enable Speculative Decoding for subsequent generations.
Args:
drafter_model (nn.Module): The drafter model (small model) used to speculate tokens.
If provided, the previous drafter and drafter model, if exist, will be overwritten.
n_spec_tokens (Optional[int]): The number of tokens to speculate in each round of speculating-verifying.
If not provided, `max_n_spec_tokens` in InferenceConfig will be used.
```python
...
engine = InferenceEngine(model, tokenizer, inference_config)
engine.enable_spec_dec(drafter_model, n_spec_tokens=5)
engine.generate(...) # Speculative Decoding
engine.disable_spec_dec()
engine.generate(...) # Normal generation
engine.enable_spec_dec()
engine.generate(...) # Speculative-Decoding using previously set drafter model and number of spec tokens
engine.clear_spec_dec()
```
"""
if drafter_model is None and self.drafter is None:
raise ValueError("Drafter not initialized. Please provide a Drafter Model")
if n_spec_tokens is not None:
assert 1 < n_spec_tokens <= self.inference_config.max_n_spec_tokens
self.n_spec_tokens = n_spec_tokens
if drafter_model is not None:
assert isinstance(drafter_model, nn.Module)
# overwrite the drafter, if exists
self.clear_spec_dec()
self.drafter_model = drafter_model
self.drafter = Drafter(
self.drafter_model,
self.tokenizer,
device=self.device,
dtype=self.dtype,
)
# using speculative decoding for subsequent generations
self.use_spec_dec = True
def disable_spec_dec(self) -> None:
"""Disable using speculative decoding for subsequent generations."""
# set back to the maximum number of tokens to speculate
self.n_spec_tokens = self.inference_config.max_n_spec_tokens
self.use_spec_dec = False
return
def clear_spec_dec(self) -> None:
"""Clear relatable structures of speculative decoding, if exist."""
if self.drafter_model or self.drafter:
self.drafter_model = None
self.drafter = None
torch.cuda.empty_cache()
self.use_spec_dec = False
return
def steps_spec_dec(self) -> List[Sequence]:
"""
Run Speculative Decoding steps. This is like retrieving a single batch and launch inference
with many steps of speculating by a drafter model as well as verifying by a main model.
Returns:
List[Sequence]: finished sequences generated by one step.
"""
batch = self.request_handler.schedule() # prefill batch
batch.set_use_spec_dec(self.n_spec_tokens) # set batch to use-spec-dec mode
assert batch.current_batch_size == 1, "Only support bsz 1 for speculative decoding for now."
input_ids = batch.get_1D_inputs() # bsz 1 for drafter model
# 1. Prefill small model (Drafter) - fill past kv cache for drafter model
drafter_out = self.drafter.speculate(input_ids, 1, None)
next_token_ids_spec = drafter_out.next_tokens
drafter_past_key_values = drafter_out.past_key_values
# 2. Prefill main model (Verifier) - fill past kv cache for main model
logits = self.model(batch, self.k_cahce, self.v_cache)
next_tokens = self.request_handler.search_tokens(self.generation_config, logits)
# append new inputs to the batch, temporarily
batch.append_batch_tokens(next_tokens)
self.request_handler.allocate_batch_spec_dec(batch, 1)
already_allocated_kv_len = batch.seq_lengths[0].item()
input_ids = batch.get_1D_inputs_spec_dec(1)
batch.reset_use_spec_dec() # reset batch use-spec-dec mode
finished_sequences = self.request_handler.update()
while True:
# HACK Retrieve the running batch
# Using RequestHandler.schedule here will re-allocate same kv cache for the batch
batch = self.request_handler.running_bb # running batch
batch.set_use_spec_dec(self.n_spec_tokens)
# 3. Decoding - Drafter model speculates `n` tokens
drafter_out = self.drafter.speculate(input_ids, self.n_spec_tokens, drafter_past_key_values)
next_token_ids_spec = drafter_out.next_tokens
drafter_past_key_values = drafter_out.past_key_values
for next_token_id_spec in next_token_ids_spec:
self.request_handler.append_next_tokens(next_token_id_spec.unsqueeze(0))
cur_length = batch.seq_lengths[0].item()
if already_allocated_kv_len < cur_length:
self.request_handler.allocate_batch_spec_dec(batch, n=cur_length - already_allocated_kv_len)
already_allocated_kv_len = cur_length
# 4. Decoding - Main model verifies `n` tokens in parallel
logits = self.model(batch, self.k_cahce, self.v_cache)
next_tokens = self.request_handler.search_tokens(self.generation_config, logits)
# 5. Compare and process the results
diff_indexes = torch.nonzero(~(next_tokens[:-1] == next_token_ids_spec))
n_matches = self.n_spec_tokens if diff_indexes.size(0) == 0 else diff_indexes[0][0].item()
# revoke appended tokens for each Sequence in the current batch
batch.revoke_batch_tokens(self.n_spec_tokens - n_matches) # revoke drafted tokens
# append the last correct token generated by the main model
self.request_handler.append_next_tokens(next_tokens[n_matches].unsqueeze(0))
input_ids = batch.get_1D_inputs_spec_dec(1)
# trim past key values of the drafter model
drafter_past_key_values = Drafter.trim_kv_cache(drafter_past_key_values, self.n_spec_tokens - n_matches - 1)
self.request_handler.update_batch_finished(batch, generation_config=self.generation_config)
finished_sequences = self.request_handler.update()
if len(finished_sequences) > 0:
break
batch.reset_use_spec_dec()
return finished_sequences
def generate(
self,
prompts: List[str] = None,
@@ -246,7 +383,6 @@ class InferenceEngine:
List[str]: Inference result returned by one generation.
"""
with torch.inference_mode():
self.generation_config = generation_config
if prompts is not None or prompts_token_ids is not None:
self.add_request(request_ids=request_ids, prompts=prompts, prompts_token_ids=prompts_token_ids)
@@ -257,8 +393,13 @@ class InferenceEngine:
if generation_config is not None:
self.generation_config = generation_config
while self.request_handler.check_unfinished_seqs():
output_seqs_list += self.step()
if self.use_spec_dec:
assert self.drafter is not None, "Drafter Model is not initialized."
while self.request_handler.check_unfinished_seqs():
output_seqs_list += self.steps_spec_dec()
else:
while self.request_handler.check_unfinished_seqs():
output_seqs_list += self.step()
output_seqs_list = sorted(output_seqs_list, key=lambda x: int(x.request_id))
@@ -428,7 +569,8 @@ class InferenceEngine:
logits = model_executable(input_token_ids, output_tensor, input_meta_data, self.k_cache, self.v_cache)
if self.inference_config.pad_input:
logits = logits[:, -1, :]
self.request_handler.search_tokens(self.generation_config, logits)
next_tokens = self.request_handler.search_tokens(self.generation_config, logits)
self.request_handler.append_next_tokens(next_tokens)
finished_sequences = self.request_handler.update()