[pipeline/rpc] support interleaving | fix checkpoint bug | change logic when dispatch data in work_list to ensure steady 1F1B (#1483)

* support p2p communication with any type of object | pass test

* reconstruct pipeline schedule with p2p_v2.py(support communication with List[Any]) | pass test

* [engin/schedule] use p2p_v2 to recontruct pipeline_schedule

* [pipeline/rpc] implement a demo for PP with cuda rpc framework

* [pipeline/rpc] support interleaving | fix checkpoint bug | change logic when dispatch data in work_list to ensure steady 1F1B
This commit is contained in:
Kirigaya Kazuto
2022-08-24 11:19:46 +08:00
committed by GitHub
parent d6e3dca436
commit a6c8749198
3 changed files with 366 additions and 139 deletions

View File

@@ -11,14 +11,14 @@ from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOn
class TestModel(nn.Module):
def __init__(self, rank, world_size, feat_num, h) -> None:
def __init__(self, stage_id, actual_stage_num, feat_num, h) -> None:
super().__init__()
self.rank = rank
self.is_last_rank = rank == world_size - 1
self.linear_name = f'linear_{rank}'
if rank == 0:
self.rank = stage_id
self.is_last_rank = stage_id == actual_stage_num - 1
self.linear_name = f'linear_{stage_id}'
if stage_id == 0:
setattr(self, self.linear_name, nn.Linear(feat_num, h))
elif rank == world_size - 1:
elif stage_id == actual_stage_num - 1:
setattr(self, self.linear_name, nn.Linear(h, 1))
else:
setattr(self, self.linear_name, nn.Linear(h, h))
@@ -35,32 +35,35 @@ class TestModel(nn.Module):
def run_main(args):
torch.manual_seed(100)
sample_num = 128
feat_num = 10000
h = 10000
device = args.device
world_size = args.world_size
batch_size = 128
stage_num = args.world_size
chunk = args.chunk
num_microbatches = args.num_microbatches
actual_stage_num = stage_num * chunk
use_interleave = args.use_interleave
use_checkpoint = args.use_checkpoint
sample_num = 1024
feat_num = 10
h = 10
batch_size = 1024
assert sample_num % batch_size == 0
batch_num = sample_num // batch_size
num_microbatches = world_size
input_sample = torch.randn((sample_num, feat_num), device=device)
module_partitions = [TestModel(rank, world_size, feat_num, h) for rank in range(world_size)]
module_partitions = [TestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
chunk=1,
world_size=world_size,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=args.device,
max_outstanding=world_size,
use_interleave=False,
checkpoint=False)
device=device,
chunk=chunk,
use_interleave=use_interleave,
checkpoint=use_checkpoint)
for i in range(batch_num):
batch = input_sample[i * batch_size:(i + 1) * batch_size]
engine.forward_backward(batch)
_ = engine.forward_backward(input_sample)
def run_worker(rank, args):
@@ -88,7 +91,11 @@ def run_worker(rank, args):
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--num_microbatches', type=int, default=2)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--use_checkpoint', action='store_true')
parser.add_argument('--use_interleave', action='store_true')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29020')
parser.add_argument('--num_worker_threads', type=str, default=128)

View File

@@ -0,0 +1,150 @@
import os
import argparse
import torch
from torch import nn
import torch.multiprocessing as mp
import torch.distributed.rpc as rpc
from torch import autograd
from colorama import Back, Style
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
def color_debug(text, prefix=' ', color='blue'):
color = color.upper()
print(getattr(Back, color), prefix, Style.RESET_ALL, text)
class TestModel(nn.Module):
def __init__(self, stage_id, actual_stage_num, feat_num, h) -> None:
super().__init__()
self.rank = stage_id
self.is_last_rank = stage_id == actual_stage_num - 1
self.linear_name = f'linear_{stage_id}'
if stage_id == 0:
setattr(self, self.linear_name, nn.Linear(feat_num, h))
elif stage_id == actual_stage_num - 1:
setattr(self, self.linear_name, nn.Linear(h, 1))
else:
setattr(self, self.linear_name, nn.Linear(h, h))
def forward(self, x) -> torch.Tensor:
linear: nn.Module = getattr(self, self.linear_name)
out: torch.Tensor = linear(x)
if self.is_last_rank:
out = out.sum()
return out
def run_main(args):
torch.manual_seed(100)
device = args.device
stage_num = args.world_size
chunk = args.chunk
actual_stage_num = stage_num * chunk
use_interleave = args.use_interleave
use_checkpoint = args.use_checkpoint
sample_num = 1024
feat_num = 100
h = 100
batch_size = 1024
assert sample_num % batch_size == 0
batch_num = sample_num // batch_size
num_microbatches = stage_num * 1
input_sample = torch.randn((sample_num, feat_num), device=device)
module_partitions = [TestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
chunk=chunk,
use_interleave=use_interleave,
checkpoint=use_checkpoint)
forward_result = engine.forward_backward(input_sample)
cuda_rpc_result = []
single_result = []
actual_stage_num = engine._get_actual_stage_num()
# color_debug('cuda rpc forward', 'Test')
# print(sum(forward_result[0]))
cuda_rpc_result.append(sum(forward_result[0]).item())
# color_debug('cuda rpc backward', 'Test')
grad = engine.remote_grad()
for stage_id in range(actual_stage_num):
for p in grad[stage_id]:
# print(p.sum())
cuda_rpc_result.append(p.sum().item())
test_model = nn.Sequential(*module_partitions).to(device)
input_sample = input_sample.requires_grad_()
out_val = test_model(input_sample).sum()
autograd.backward(out_val)
# color_debug('single forward', 'Test')
# print(out_val)
single_result.append(out_val.item())
# color_debug('single backward', 'Test')
for p in test_model.parameters():
# print(p.grad.sum())
single_result.append(p.grad.sum().item())
cuda_rpc_result = torch.tensor(cuda_rpc_result)
single_result = torch.tensor(single_result)
distance = (cuda_rpc_result - single_result).abs().sum().item()
kappa = round(distance / actual_stage_num, 5)
assert kappa < 0.01, f"kappa({kappa}) is too big, PP result may be incorrect!"
def run_worker(rank, args):
os.environ['MASTER_ADDR'] = args.master_addr
os.environ['MASTER_PORT'] = args.master_port
# config rpc
# if cuda is used, set_device_map is a must is configured
# for cuda is not supported in torch rpc by default
options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=args.num_worker_threads)
world_size = args.world_size
for rank_idx in range(world_size):
options.set_device_map(f'work{rank_idx}', {rank: rank_idx})
rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options)
# in rpc mode, only rank 0 is needed to be coded
if rank == 0:
run_main(args)
# barrier here
rpc.shutdown()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--num_microbatches', type=int, default=2)
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--use_checkpoint', action='store_true')
parser.add_argument('--use_interleave', action='store_true')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29020')
parser.add_argument('--num_worker_threads', type=str, default=128)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
world_size = args.world_size
assert args.num_microbatches >= args.world_size, "num_microbatches cannot be fewer than world_size!"
assert args.device in ['cpu', 'cuda'], "device must be cpu or cuda!"
mp.spawn(run_worker, args=(args,), nprocs=world_size)