mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-12-02 19:56:09 +00:00
[pipeline/rpc] support interleaving | fix checkpoint bug | change logic when dispatch data in work_list to ensure steady 1F1B (#1483)
* support p2p communication with any type of object | pass test * reconstruct pipeline schedule with p2p_v2.py(support communication with List[Any]) | pass test * [engin/schedule] use p2p_v2 to recontruct pipeline_schedule * [pipeline/rpc] implement a demo for PP with cuda rpc framework * [pipeline/rpc] support interleaving | fix checkpoint bug | change logic when dispatch data in work_list to ensure steady 1F1B
This commit is contained in:
@@ -11,14 +11,14 @@ from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOn
|
||||
|
||||
class TestModel(nn.Module):
|
||||
|
||||
def __init__(self, rank, world_size, feat_num, h) -> None:
|
||||
def __init__(self, stage_id, actual_stage_num, feat_num, h) -> None:
|
||||
super().__init__()
|
||||
self.rank = rank
|
||||
self.is_last_rank = rank == world_size - 1
|
||||
self.linear_name = f'linear_{rank}'
|
||||
if rank == 0:
|
||||
self.rank = stage_id
|
||||
self.is_last_rank = stage_id == actual_stage_num - 1
|
||||
self.linear_name = f'linear_{stage_id}'
|
||||
if stage_id == 0:
|
||||
setattr(self, self.linear_name, nn.Linear(feat_num, h))
|
||||
elif rank == world_size - 1:
|
||||
elif stage_id == actual_stage_num - 1:
|
||||
setattr(self, self.linear_name, nn.Linear(h, 1))
|
||||
else:
|
||||
setattr(self, self.linear_name, nn.Linear(h, h))
|
||||
@@ -35,32 +35,35 @@ class TestModel(nn.Module):
|
||||
def run_main(args):
|
||||
torch.manual_seed(100)
|
||||
|
||||
sample_num = 128
|
||||
feat_num = 10000
|
||||
h = 10000
|
||||
device = args.device
|
||||
world_size = args.world_size
|
||||
batch_size = 128
|
||||
stage_num = args.world_size
|
||||
chunk = args.chunk
|
||||
num_microbatches = args.num_microbatches
|
||||
actual_stage_num = stage_num * chunk
|
||||
use_interleave = args.use_interleave
|
||||
use_checkpoint = args.use_checkpoint
|
||||
|
||||
sample_num = 1024
|
||||
feat_num = 10
|
||||
h = 10
|
||||
batch_size = 1024
|
||||
|
||||
assert sample_num % batch_size == 0
|
||||
batch_num = sample_num // batch_size
|
||||
num_microbatches = world_size
|
||||
|
||||
input_sample = torch.randn((sample_num, feat_num), device=device)
|
||||
|
||||
module_partitions = [TestModel(rank, world_size, feat_num, h) for rank in range(world_size)]
|
||||
module_partitions = [TestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
|
||||
|
||||
engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
|
||||
chunk=1,
|
||||
world_size=world_size,
|
||||
stage_num=stage_num,
|
||||
num_microbatches=num_microbatches,
|
||||
device=args.device,
|
||||
max_outstanding=world_size,
|
||||
use_interleave=False,
|
||||
checkpoint=False)
|
||||
device=device,
|
||||
chunk=chunk,
|
||||
use_interleave=use_interleave,
|
||||
checkpoint=use_checkpoint)
|
||||
|
||||
for i in range(batch_num):
|
||||
batch = input_sample[i * batch_size:(i + 1) * batch_size]
|
||||
engine.forward_backward(batch)
|
||||
_ = engine.forward_backward(input_sample)
|
||||
|
||||
|
||||
def run_worker(rank, args):
|
||||
@@ -88,7 +91,11 @@ def run_worker(rank, args):
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--world_size', type=int, default=2)
|
||||
parser.add_argument('--num_microbatches', type=int, default=2)
|
||||
parser.add_argument('--device', type=str, default='cuda')
|
||||
parser.add_argument('--chunk', type=int, default=1)
|
||||
parser.add_argument('--use_checkpoint', action='store_true')
|
||||
parser.add_argument('--use_interleave', action='store_true')
|
||||
parser.add_argument('--master_addr', type=str, default='localhost')
|
||||
parser.add_argument('--master_port', type=str, default='29020')
|
||||
parser.add_argument('--num_worker_threads', type=str, default=128)
|
||||
|
||||
Reference in New Issue
Block a user