diff --git a/applications/ColossalChat/tests/test_train.sh b/applications/ColossalChat/tests/test_train.sh index 7b3b4ab4f..3b06495cb 100755 --- a/applications/ColossalChat/tests/test_train.sh +++ b/applications/ColossalChat/tests/test_train.sh @@ -30,7 +30,7 @@ MODEL_SAVE_PATH=$TEMP_DIR/rlhf_models MODELS_DIR=$TEMP_DIR/models_config # Skip those tests due to CI tests timeout MODELS=('llama') -ADVANCED_PLUGINS=('zero2' 'sp_split_gather' 'sp_ring' 'sp_all_to_all' 'tp_zero2' '3d' 'gemini' 'gemini_auto' 'zero2_cpu' 'pp') +ADVANCED_PLUGINS=('zero2' 'sp_split_gather' 'sp_ring' 'sp_all_to_all' 'tp_zero2' '3d' 'gemini' 'gemini_auto' 'zero2_cpu' 'pp' 'tp_pp') PLUGINS=('zero2' '3d' 'gemini' 'gemini_auto' 'zero2_cpu') LORA_RANK=('0') # skip to reduce CI execution time, can pass all locally LORA_CONFIG_ENABLE="--lora_config $BASE_DIR/examples/training_scripts/lora_config.json" diff --git a/colossalai/booster/plugin/hybrid_parallel_plugin.py b/colossalai/booster/plugin/hybrid_parallel_plugin.py index e5acdb051..faf1f0218 100644 --- a/colossalai/booster/plugin/hybrid_parallel_plugin.py +++ b/colossalai/booster/plugin/hybrid_parallel_plugin.py @@ -1326,11 +1326,9 @@ class HybridParallelPlugin(PipelinePluginBase): ) # run with gradients accumulation - if ( - model.require_grad_sync == False - or (isinstance(optimizer, HybridParallelZeroOptimizer) and optimizer.require_grad_sync == False) - or not torch.is_grad_enabled() - ): + if model.require_grad_sync == False or ( + isinstance(optimizer, HybridParallelZeroOptimizer) and optimizer.require_grad_sync == False + ) or not torch.is_grad_enabled(): return outputs # Synchronize the grads of shared parameters of the model.