mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 19:13:01 +00:00
[Sharderformer] Support zbv in Sharderformer Policy (#6150)
* [feat] Sharderformer support zbv * [feat] support chatglm2, command, deepseek for zbv * [feat] support zbv in shardformer policy: falcon,gptj,mistral,opt,qwen2,t5, vit, whisper * [feat] support GPT2FusedLinearConv1D * [feat] support GPT2FusedLinear (without tp) * [fix] debug FusedConvLinear * [shardfromer] support gpt2 policy for zbv, support GPT2FusedLinearConv Col and Row. * [Shardformer] support FusedLinear1D base for zbv * [shardformer] support zbv in FusedLinear1D base, Col, Row * [shardformer] support zbv in blip2 and sam policy * [shardformer] fix bug incorrect number of gradients; add fusedLinear base testcase; * [fix] fix incorrect number of gradients ; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [Shardformer] add en doc for zbv; * [fix] fix typo in Model compatibility table * [fix] fix API Reference typo * [Shardformer] add zh-Han doc for zbv * [fix] fix Linear name; update en & zh doc * [fix] fix shardformer doc import err * [fix] fix shardconfig import in doc * [fix] fix shardformer doc * [fix] fix shardconfig doc * [fix] fix config * [fix] remove shardconfig * [fix] fix doc * [feat] add zbv doc string * [fix] rm doc * [fix] fix doc * [fix] empty zbv doc * [fix] ifx torch version * [fix] fix torch version * [fix] fix torch versions * [fix] fix torch versions * [fix] fix pyramid versions * [fix] fix pyramid, zope version * [fix] try fix workflow * [fix] try import ShardConfig in yml * [fix] fix workflow * [fix] fix workflow * [fix] fix workflow * [fix] fix workflow * [fix] fix ci * [fix] fix zbv doc * [fix] fix param for qkv linear, gpt2fused linear; fix requirments; * [fix] fix policy use fused_linear * [fix] fix weight grad none, err caused by weight ptr change * [fix] fix comm in WeightGradStore * [fix] fix WeightGradStore pop param * [fix] remove useless param in doc; fix gpt2 qkv test; * [shardformer] simplify execute_w_pass_grad_accum; * [fix] rm useless comments * [shardformer] simplify execute_w_pass_grad_accum & execute_w_pass * [shardformer] Run meaningful doc test * [shadformer] fix doc test cmd; --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -6,7 +6,13 @@ import torch.nn.functional as F
|
||||
|
||||
from colossalai.pipeline.weight_grad_store import WeightGradStore
|
||||
|
||||
from .utils import is_share_sp_tp
|
||||
from .utils import (
|
||||
execute_conv1d_w_pass,
|
||||
execute_conv1d_w_pass_grad_accum,
|
||||
execute_w_pass,
|
||||
execute_w_pass_grad_accum,
|
||||
is_share_sp_tp,
|
||||
)
|
||||
|
||||
try:
|
||||
import fused_mix_prec_layer_norm_cuda
|
||||
@@ -73,12 +79,13 @@ class MatmulWithAsyncCommunication(torch.autograd.Function):
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False):
|
||||
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False, use_zbv=False):
|
||||
ctx.save_for_backward(input_, weight, bias)
|
||||
ctx.use_bias = bias is not None
|
||||
ctx.process_group = process_group
|
||||
ctx.async_grad_allreduce = async_grad_allreduce
|
||||
ctx.fp8_communication = fp8_communication
|
||||
ctx.use_zbv = use_zbv
|
||||
|
||||
output = torch.matmul(input_, weight)
|
||||
|
||||
@@ -92,8 +99,10 @@ class MatmulWithAsyncCommunication(torch.autograd.Function):
|
||||
input, weight, bias = ctx.saved_tensors
|
||||
use_bias = ctx.use_bias
|
||||
fp8_communication = ctx.fp8_communication
|
||||
use_zbv = ctx.use_zbv
|
||||
|
||||
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias.
|
||||
weight_origin = weight
|
||||
weight = weight.view(weight.shape)
|
||||
if bias is not None:
|
||||
bias = bias.view(bias.shape)
|
||||
@@ -114,7 +123,42 @@ class MatmulWithAsyncCommunication(torch.autograd.Function):
|
||||
# Rely on CUDA_DEVICE_MAX_CONNECTIONS=1 to have
|
||||
# all-reduce scheduled first and have GPU resources allocated, CUDA_DEVICE_MAX_CONNECTIONS=1 is set in shardformer.py
|
||||
|
||||
grad_weight = total_input.t().matmul(grad_output)
|
||||
# split dx & dw
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
(weight, weight_origin),
|
||||
functools.partial(
|
||||
execute_conv1d_w_pass_grad_accum,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = total_input.t().matmul(grad_output)
|
||||
else:
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
(weight, weight_origin),
|
||||
functools.partial(
|
||||
execute_conv1d_w_pass,
|
||||
wgrad_gemm_func=torch.matmul,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = total_input.t().matmul(grad_output)
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
if ctx.async_grad_allreduce and not fp8_communication:
|
||||
@@ -123,6 +167,87 @@ class MatmulWithAsyncCommunication(torch.autograd.Function):
|
||||
return grad_input, grad_weight, grad_bias, None, None, None, None
|
||||
|
||||
|
||||
class MatmulWithGradAccum(torch.autograd.Function):
|
||||
"""
|
||||
Linear layer execution with grad accum in backprop. (no tp version)
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, weight, bias, async_grad_allreduce, use_zbv=False):
|
||||
ctx.save_for_backward(input_, weight, bias)
|
||||
ctx.use_bias = bias is not None
|
||||
ctx.async_grad_allreduce = async_grad_allreduce
|
||||
ctx.use_zbv = use_zbv
|
||||
|
||||
output = torch.matmul(input_, weight)
|
||||
if bias is not None:
|
||||
output = output + bias
|
||||
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
input, weight, bias = ctx.saved_tensors
|
||||
use_bias = ctx.use_bias
|
||||
use_zbv = ctx.use_zbv
|
||||
|
||||
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias.
|
||||
weight_origin = weight
|
||||
weight = weight.view(weight.shape)
|
||||
if bias is not None:
|
||||
bias = bias.view(bias.shape)
|
||||
|
||||
total_input = input
|
||||
grad_input = grad_output.matmul(weight.T)
|
||||
grad_output = grad_output.contiguous()
|
||||
# Convert the tensor shapes to 2D for execution compatibility
|
||||
if len(grad_output.shape) > 2:
|
||||
grad_output = grad_output.view(-1, grad_output.shape[-1])
|
||||
total_input = total_input.view(-1, total_input.shape[-1])
|
||||
|
||||
# split dx & dw
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
(weight, weight_origin),
|
||||
functools.partial(
|
||||
execute_conv1d_w_pass_grad_accum,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = total_input.t().matmul(grad_output)
|
||||
else:
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
(weight, weight_origin),
|
||||
functools.partial(
|
||||
execute_conv1d_w_pass,
|
||||
wgrad_gemm_func=torch.matmul,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = total_input.t().matmul(grad_output)
|
||||
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None, None, None, None
|
||||
|
||||
|
||||
class LinearWithAsyncCommunication(torch.autograd.Function):
|
||||
"""
|
||||
Linear layer execution with asynchronous communication in backprop.
|
||||
@@ -150,12 +275,6 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
|
||||
fp8_communication = ctx.fp8_communication
|
||||
use_zbv = ctx.use_zbv
|
||||
|
||||
def execute_w_pass_grad_accum(_input_, _grad_output_, _weight_main_grad_, wgrad_gemm_accum_func=None):
|
||||
wgrad_gemm_accum_func(_input_, _grad_output_, _weight_main_grad_)
|
||||
|
||||
def execute_w_pass(_input_, _grad_output_, _weight_main_grad_=None, wgrad_gemm_func=None):
|
||||
return wgrad_gemm_func(_grad_output_.t(), _input_)
|
||||
|
||||
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias.
|
||||
if use_bias:
|
||||
bias.view(bias.shape)
|
||||
@@ -179,31 +298,15 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if use_zbv:
|
||||
# TODO: append input, grad_output_, weight, grad func to WeightGradStore
|
||||
if grad.dtype == torch.float32:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
elif grad.dtype in (torch.float16, torch.bfloat16):
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
@@ -259,12 +362,6 @@ class LinearWithGradAccum(torch.autograd.Function):
|
||||
use_bias = ctx.use_bias
|
||||
use_zbv = ctx.use_zbv
|
||||
|
||||
def execute_w_pass_grad_accum(_input_, _grad_output_, _weight_main_grad_, wgrad_gemm_accum_func=None):
|
||||
wgrad_gemm_accum_func(_input_, _grad_output_, _weight_main_grad_)
|
||||
|
||||
def execute_w_pass(_input_, _grad_output_, _weight_main_grad_=None, wgrad_gemm_func=None):
|
||||
return wgrad_gemm_func(_grad_output_.t(), _input_)
|
||||
|
||||
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias.
|
||||
if use_bias:
|
||||
bias.view(bias.shape)
|
||||
@@ -280,31 +377,15 @@ class LinearWithGradAccum(torch.autograd.Function):
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if use_zbv:
|
||||
# TODO: append input, grad_output_, weight, grad func to WeightGradStore
|
||||
if grad.dtype == torch.float32:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
elif grad.dtype in (torch.float16, torch.bfloat16):
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
@@ -454,12 +535,13 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring=False):
|
||||
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring=False, use_zbv=False):
|
||||
ctx.save_for_backward(input_, weight, bias)
|
||||
ctx.use_bias = bias is not None
|
||||
ctx.process_group = process_group
|
||||
ctx.async_grad_reduce_scatter = async_grad_reduce_scatter
|
||||
ctx.dim = dim
|
||||
ctx.use_zbv = use_zbv
|
||||
|
||||
if ring is True:
|
||||
input_to_gather = {"input": input_}
|
||||
@@ -491,6 +573,7 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
||||
use_bias = ctx.use_bias
|
||||
dim = ctx.dim
|
||||
process_group = ctx.process_group
|
||||
use_zbv = ctx.use_zbv
|
||||
|
||||
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm
|
||||
if use_bias:
|
||||
@@ -518,23 +601,46 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
||||
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
else:
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
else:
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass,
|
||||
wgrad_gemm_func=torch.matmul,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
if ctx.async_grad_reduce_scatter:
|
||||
handle.wait()
|
||||
|
||||
return output, grad_weight, grad_bias, None, None, None, None
|
||||
return output, grad_weight, grad_bias, None, None, None, None, None
|
||||
|
||||
|
||||
def _ring_as_reducescatter(
|
||||
@@ -606,11 +712,12 @@ class _LinearWithReduceScatterForwardGatherBackward(torch.autograd.Function):
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, weight, bias, process_group, dim, ring):
|
||||
def forward(ctx, input_, weight, bias, process_group, dim, ring, use_zbv=False):
|
||||
ctx.save_for_backward(input_, weight, bias)
|
||||
ctx.use_bias = bias is not None
|
||||
ctx.process_group = process_group
|
||||
ctx.dim = dim
|
||||
ctx.use_zbv = use_zbv
|
||||
|
||||
if ring is True:
|
||||
input_to_reducescatter = {"input": input_}
|
||||
@@ -651,7 +758,7 @@ class _LinearWithReduceScatterForwardGatherBackward(torch.autograd.Function):
|
||||
use_bias = ctx.use_bias
|
||||
dim = ctx.dim
|
||||
process_group = ctx.process_group
|
||||
|
||||
use_zbv = ctx.use_zbv
|
||||
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm
|
||||
if use_bias:
|
||||
bias = bias.view(bias.shape)
|
||||
@@ -666,10 +773,47 @@ class _LinearWithReduceScatterForwardGatherBackward(torch.autograd.Function):
|
||||
if len(grad_output.shape) > 2:
|
||||
grad_output = grad_output.view(-1, grad_output.shape[-1])
|
||||
total_input = total_input.reshape(-1, total_input.shape[-1])
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass_grad_accum,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
else:
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
weight,
|
||||
functools.partial(
|
||||
execute_w_pass,
|
||||
wgrad_gemm_func=torch.matmul,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
|
||||
# grad_weight = grad_output.t().matmul(total_input)
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None, None, None
|
||||
return grad_input, grad_weight, grad_bias, None, None, None, None
|
||||
|
||||
|
||||
class _ReduceScatterForwardGatherBackward(torch.autograd.Function):
|
||||
@@ -723,13 +867,16 @@ class _MatmulWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring, fp8_communication):
|
||||
def forward(
|
||||
ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring, fp8_communication, use_zbv=False
|
||||
):
|
||||
ctx.save_for_backward(input_, weight, bias)
|
||||
ctx.use_bias = bias is not None
|
||||
ctx.process_group = process_group
|
||||
ctx.async_grad_reduce_scatter = async_grad_reduce_scatter
|
||||
ctx.dim = dim
|
||||
ctx.fp8_communication = fp8_communication
|
||||
ctx.use_zbv = use_zbv
|
||||
|
||||
if ring is True:
|
||||
input_to_gather = {"input": input_}
|
||||
@@ -759,8 +906,10 @@ class _MatmulWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
||||
use_bias = ctx.use_bias
|
||||
dim = ctx.dim
|
||||
process_group = ctx.process_group
|
||||
use_zbv = ctx.use_zbv
|
||||
|
||||
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm
|
||||
weight_origin = weight
|
||||
weight = weight.view(weight.shape)
|
||||
if use_bias:
|
||||
bias = bias.view(bias.shape)
|
||||
@@ -785,13 +934,49 @@ class _MatmulWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
||||
# Rely on CUDA_DEVICE_MAX_CONNECTIONS=1 to have
|
||||
# all-reduce scheduled first and have GPU resources allocated
|
||||
|
||||
grad_weight = total_input.t().matmul(grad_output)
|
||||
# split dx & dw
|
||||
if _grad_accum_fusion_available and weight.grad is not None:
|
||||
grad = weight.grad
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
(weight, weight_origin),
|
||||
functools.partial(
|
||||
execute_conv1d_w_pass_grad_accum,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
if grad.dtype == torch.float32:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
elif grad.dtype == torch.float16:
|
||||
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = total_input.t().matmul(grad_output)
|
||||
else:
|
||||
if use_zbv:
|
||||
WeightGradStore.put(
|
||||
total_input,
|
||||
grad_output,
|
||||
(weight, weight_origin),
|
||||
functools.partial(
|
||||
execute_conv1d_w_pass,
|
||||
wgrad_gemm_func=torch.matmul,
|
||||
),
|
||||
)
|
||||
grad_weight = None
|
||||
else:
|
||||
grad_weight = total_input.t().matmul(grad_output)
|
||||
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
if ctx.async_grad_reduce_scatter:
|
||||
handle.wait()
|
||||
|
||||
return output, grad_weight, grad_bias, None, None, None, None, None
|
||||
return output, grad_weight, grad_bias, None, None, None, None, None, None
|
||||
|
||||
|
||||
class _SplitForwardGatherBackward(torch.autograd.Function):
|
||||
@@ -1108,12 +1293,18 @@ def _all_to_all_single(
|
||||
).contiguous()
|
||||
|
||||
|
||||
def matmul_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False):
|
||||
def matmul_with_async_comm(
|
||||
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False, use_zbv=False
|
||||
):
|
||||
return MatmulWithAsyncCommunication.apply(
|
||||
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication
|
||||
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication, use_zbv
|
||||
)
|
||||
|
||||
|
||||
def matmul_with_grad_comm(input_, weight, bias, async_grad_allreduce, use_zbv=False):
|
||||
return MatmulWithGradAccum.apply(input_, weight, bias, async_grad_allreduce, use_zbv)
|
||||
|
||||
|
||||
def linear_with_async_comm(
|
||||
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False, use_zbv=False
|
||||
):
|
||||
@@ -1127,10 +1318,10 @@ def linear_with_grad_accum(input_, weight, bias, async_grad_allreduce, use_zbv=F
|
||||
|
||||
|
||||
def linear_gather_forward_reducescatter_backward(
|
||||
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring=False
|
||||
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring=False, use_zbv=False
|
||||
):
|
||||
return _LinearWithGatherForwardReduceScatterBackward.apply(
|
||||
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring
|
||||
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring, use_zbv
|
||||
)
|
||||
|
||||
|
||||
@@ -1142,15 +1333,25 @@ def reducescatter_forward_gather_backward(input_, process_group, dim, fp8_commun
|
||||
return _ReduceScatterForwardGatherBackward.apply(input_, process_group, dim, fp8_communication)
|
||||
|
||||
|
||||
def linear_reducescatter_forward_gather_backward(input_, weight, bias=None, process_group=None, dim=1, ring=False):
|
||||
return _LinearWithReduceScatterForwardGatherBackward.apply(input_, weight, bias, process_group, dim, ring)
|
||||
def linear_reducescatter_forward_gather_backward(
|
||||
input_, weight, bias=None, process_group=None, dim=1, ring=False, use_zbv=False
|
||||
):
|
||||
return _LinearWithReduceScatterForwardGatherBackward.apply(input_, weight, bias, process_group, dim, ring, use_zbv)
|
||||
|
||||
|
||||
def matmul_gather_forward_reducescatter_backward(
|
||||
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring=False, fp8_communication=False
|
||||
input_,
|
||||
weight,
|
||||
bias,
|
||||
process_group,
|
||||
async_grad_reduce_scatter,
|
||||
dim,
|
||||
ring=False,
|
||||
fp8_communication=False,
|
||||
use_zbv=False,
|
||||
):
|
||||
return _MatmulWithGatherForwardReduceScatterBackward.apply(
|
||||
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring, fp8_communication
|
||||
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring, fp8_communication, use_zbv
|
||||
)
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user