mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 03:52:01 +00:00
[Sharderformer] Support zbv in Sharderformer Policy (#6150)
* [feat] Sharderformer support zbv * [feat] support chatglm2, command, deepseek for zbv * [feat] support zbv in shardformer policy: falcon,gptj,mistral,opt,qwen2,t5, vit, whisper * [feat] support GPT2FusedLinearConv1D * [feat] support GPT2FusedLinear (without tp) * [fix] debug FusedConvLinear * [shardfromer] support gpt2 policy for zbv, support GPT2FusedLinearConv Col and Row. * [Shardformer] support FusedLinear1D base for zbv * [shardformer] support zbv in FusedLinear1D base, Col, Row * [shardformer] support zbv in blip2 and sam policy * [shardformer] fix bug incorrect number of gradients; add fusedLinear base testcase; * [fix] fix incorrect number of gradients ; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [Shardformer] add en doc for zbv; * [fix] fix typo in Model compatibility table * [fix] fix API Reference typo * [Shardformer] add zh-Han doc for zbv * [fix] fix Linear name; update en & zh doc * [fix] fix shardformer doc import err * [fix] fix shardconfig import in doc * [fix] fix shardformer doc * [fix] fix shardconfig doc * [fix] fix config * [fix] remove shardconfig * [fix] fix doc * [feat] add zbv doc string * [fix] rm doc * [fix] fix doc * [fix] empty zbv doc * [fix] ifx torch version * [fix] fix torch version * [fix] fix torch versions * [fix] fix torch versions * [fix] fix pyramid versions * [fix] fix pyramid, zope version * [fix] try fix workflow * [fix] try import ShardConfig in yml * [fix] fix workflow * [fix] fix workflow * [fix] fix workflow * [fix] fix workflow * [fix] fix ci * [fix] fix zbv doc * [fix] fix param for qkv linear, gpt2fused linear; fix requirments; * [fix] fix policy use fused_linear * [fix] fix weight grad none, err caused by weight ptr change * [fix] fix comm in WeightGradStore * [fix] fix WeightGradStore pop param * [fix] remove useless param in doc; fix gpt2 qkv test; * [shardformer] simplify execute_w_pass_grad_accum; * [fix] rm useless comments * [shardformer] simplify execute_w_pass_grad_accum & execute_w_pass * [shardformer] Run meaningful doc test * [shadformer] fix doc test cmd; --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -9,6 +9,43 @@ from torch.distributed import ProcessGroup, get_world_size
|
||||
|
||||
from colossalai.accelerator import get_accelerator
|
||||
|
||||
try:
|
||||
import fused_weight_gradient_mlp_cuda
|
||||
|
||||
_grad_accum_fusion_available = True
|
||||
except ImportError:
|
||||
_grad_accum_fusion_available = False
|
||||
|
||||
|
||||
# execute_w_pass_grad_accum & execute_conv1d_w_pass for GPT2FusedLinearConv1D
|
||||
def execute_conv1d_w_pass_grad_accum(_input_, _grad_output_, _weight_main_grad_):
|
||||
if _input_.dtype == torch.float32:
|
||||
wgrad_gemm_accum_func = fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32
|
||||
elif _input_.dtype in (torch.float16, torch.bfloat16):
|
||||
wgrad_gemm_accum_func = fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16
|
||||
else:
|
||||
raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")
|
||||
wgrad_gemm_accum_func(_grad_output_, _input_, _weight_main_grad_)
|
||||
|
||||
|
||||
def execute_conv1d_w_pass(_input_, _grad_output_, _weight_main_grad_=None, wgrad_gemm_func=None):
|
||||
return wgrad_gemm_func(_input_.t(), _grad_output_)
|
||||
|
||||
|
||||
# execute_w_pass_grad_accum & execute_w_pass for Linear (except GPT2FusedLinearConv1D)
|
||||
def execute_w_pass_grad_accum(_input_, _grad_output_, _weight_main_grad_):
|
||||
if _input_.dtype == torch.float32:
|
||||
wgrad_gemm_accum_func = fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32
|
||||
elif _input_.dtype in (torch.float16, torch.bfloat16):
|
||||
wgrad_gemm_accum_func = fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16
|
||||
else:
|
||||
raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")
|
||||
wgrad_gemm_accum_func(_input_, _grad_output_, _weight_main_grad_)
|
||||
|
||||
|
||||
def execute_w_pass(_input_, _grad_output_, _weight_main_grad_=None, wgrad_gemm_func=None):
|
||||
return wgrad_gemm_func(_grad_output_.t(), _input_)
|
||||
|
||||
|
||||
class SeqParallelUtils:
|
||||
@staticmethod
|
||||
|
Reference in New Issue
Block a user