mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 02:51:59 +00:00
[Sharderformer] Support zbv in Sharderformer Policy (#6150)
* [feat] Sharderformer support zbv * [feat] support chatglm2, command, deepseek for zbv * [feat] support zbv in shardformer policy: falcon,gptj,mistral,opt,qwen2,t5, vit, whisper * [feat] support GPT2FusedLinearConv1D * [feat] support GPT2FusedLinear (without tp) * [fix] debug FusedConvLinear * [shardfromer] support gpt2 policy for zbv, support GPT2FusedLinearConv Col and Row. * [Shardformer] support FusedLinear1D base for zbv * [shardformer] support zbv in FusedLinear1D base, Col, Row * [shardformer] support zbv in blip2 and sam policy * [shardformer] fix bug incorrect number of gradients; add fusedLinear base testcase; * [fix] fix incorrect number of gradients ; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [Shardformer] add en doc for zbv; * [fix] fix typo in Model compatibility table * [fix] fix API Reference typo * [Shardformer] add zh-Han doc for zbv * [fix] fix Linear name; update en & zh doc * [fix] fix shardformer doc import err * [fix] fix shardconfig import in doc * [fix] fix shardformer doc * [fix] fix shardconfig doc * [fix] fix config * [fix] remove shardconfig * [fix] fix doc * [feat] add zbv doc string * [fix] rm doc * [fix] fix doc * [fix] empty zbv doc * [fix] ifx torch version * [fix] fix torch version * [fix] fix torch versions * [fix] fix torch versions * [fix] fix pyramid versions * [fix] fix pyramid, zope version * [fix] try fix workflow * [fix] try import ShardConfig in yml * [fix] fix workflow * [fix] fix workflow * [fix] fix workflow * [fix] fix workflow * [fix] fix ci * [fix] fix zbv doc * [fix] fix param for qkv linear, gpt2fused linear; fix requirments; * [fix] fix policy use fused_linear * [fix] fix weight grad none, err caused by weight ptr change * [fix] fix comm in WeightGradStore * [fix] fix WeightGradStore pop param * [fix] remove useless param in doc; fix gpt2 qkv test; * [shardformer] simplify execute_w_pass_grad_accum; * [fix] rm useless comments * [shardformer] simplify execute_w_pass_grad_accum & execute_w_pass * [shardformer] Run meaningful doc test * [shadformer] fix doc test cmd; --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -8,7 +8,8 @@ from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.shardformer.layer import GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row
|
||||
from colossalai.pipeline.weight_grad_store import WeightGradStore
|
||||
from colossalai.shardformer.layer import GPT2FusedLinearConv, GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row
|
||||
from colossalai.shardformer.layer.qkv_fused_linear import split_fused_qkv_in_gpt2_style
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
@@ -118,11 +119,82 @@ def check_linear_conv_1d_row(lazy_init: bool, seq_parallel_mode: bool):
|
||||
assert_close(target_grad, linear_row.weight.grad)
|
||||
|
||||
|
||||
def check_linear_conv_1d_without_weight_grad_store(lazy_init: bool, seq_parallel_mode: str):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
with ctx:
|
||||
linear_copy = Conv1D(192, 48).cuda()
|
||||
linear_base = GPT2FusedLinearConv.from_native_module(linear_copy, seq_parallel_mode=seq_parallel_mode)
|
||||
|
||||
assert linear.weight.shape == torch.Size([48, 192])
|
||||
assert linear_base.weight.shape == torch.Size([48, 192])
|
||||
assert linear_base.bias.shape == torch.Size([192])
|
||||
assert linear_copy.weight is linear_base.weight
|
||||
assert linear_copy.bias is linear_base.bias
|
||||
|
||||
# ensure weights are reversibly loadable
|
||||
linear_base.load_state_dict(linear.state_dict())
|
||||
linear.load_state_dict(linear_base.state_dict())
|
||||
|
||||
# check computation correctness
|
||||
x = torch.rand(1, 4, 48).cuda()
|
||||
out = linear(x)
|
||||
gather_out = linear_base(x)
|
||||
assert_close(out, gather_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
|
||||
# check the input gradients & weight gradients
|
||||
assert_close(out.grad, gather_out.grad)
|
||||
assert_close(linear.weight.grad, linear_base.weight.grad)
|
||||
|
||||
|
||||
def check_linear_conv_1d_with_weight_grad_store(lazy_init: bool, seq_parallel_mode: str):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
with ctx:
|
||||
linear_copy = Conv1D(192, 48).cuda()
|
||||
linear_base = GPT2FusedLinearConv.from_native_module(linear_copy, seq_parallel_mode=seq_parallel_mode, use_zbv=True)
|
||||
|
||||
assert linear.weight.shape == torch.Size([48, 192])
|
||||
assert linear_base.weight.shape == torch.Size([48, 192])
|
||||
assert linear_base.bias.shape == torch.Size([192])
|
||||
assert linear_copy.weight is linear_base.weight
|
||||
assert linear_copy.bias is linear_base.bias
|
||||
|
||||
# ensure weights are reversibly loadable
|
||||
linear_base.load_state_dict(linear.state_dict())
|
||||
linear.load_state_dict(linear_base.state_dict())
|
||||
|
||||
# check computation correctness
|
||||
x = torch.rand(1, 4, 48).cuda()
|
||||
out = linear(x)
|
||||
gather_out = linear_base(x)
|
||||
assert_close(out, gather_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
|
||||
WeightGradStore.flush(chunk=0) # flush buffer to chunk 0 Queue
|
||||
WeightGradStore.pop(chunk=0)
|
||||
|
||||
# check the input gradients & weight gradients
|
||||
assert_close(out.grad, gather_out.grad)
|
||||
assert_close(linear.weight.grad, linear_base.weight.grad)
|
||||
|
||||
|
||||
@parameterize("lazy_init", [False, True])
|
||||
@parameterize("seq_parallel_mode", ["split_gather", None])
|
||||
def check_gpt2_qkv_fused_linear_1d(lazy_init: bool, seq_parallel_mode: bool):
|
||||
check_linear_conv_1d_col(lazy_init, seq_parallel_mode)
|
||||
check_linear_conv_1d_row(lazy_init, seq_parallel_mode)
|
||||
check_linear_conv_1d_without_weight_grad_store(lazy_init, None)
|
||||
check_linear_conv_1d_with_weight_grad_store(lazy_init, None)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
|
@@ -7,7 +7,7 @@ from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.shardformer.layer import FusedLinear1D_Col, FusedLinear1D_Row
|
||||
from colossalai.shardformer.layer import FusedLinear, FusedLinear1D_Col, FusedLinear1D_Row
|
||||
from colossalai.shardformer.layer.qkv_fused_linear import split_fused_qkv_in_gpt2_style
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
@@ -120,12 +120,45 @@ def check_linear_1d_col_row(lazy_init: bool):
|
||||
assert_close(target_grad2, linear_row.weight.grad)
|
||||
|
||||
|
||||
@parameterize("lazy_init", [False, True])
|
||||
def check_linear_1d_base(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
linear = nn.Linear(8, 80).cuda()
|
||||
with ctx:
|
||||
linear_copy = nn.Linear(8, 80).cuda()
|
||||
linear_base = FusedLinear.from_native_module(linear_copy)
|
||||
|
||||
assert linear.weight.shape == torch.Size([80, 8])
|
||||
assert linear.bias.shape == torch.Size([80])
|
||||
assert linear_base.weight.shape == torch.Size([80, 8])
|
||||
assert linear_base.bias.shape == torch.Size([80])
|
||||
assert linear_copy.weight is linear_base.weight
|
||||
assert linear_copy.bias is linear_base.bias
|
||||
|
||||
# ensure weights are reversibly loadable
|
||||
linear_base.load_state_dict(linear.state_dict())
|
||||
linear.load_state_dict(linear_base.state_dict())
|
||||
|
||||
# check computation correctness
|
||||
x = torch.rand(4, 8).cuda()
|
||||
out = linear(x)
|
||||
base_out = linear_base(x)
|
||||
assert_close(out, base_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
base_out.sum().backward()
|
||||
|
||||
assert_close(linear.weight.grad, linear_base.weight.grad)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
|
||||
check_linear_1d_col()
|
||||
check_linear_1d_row()
|
||||
check_linear_1d_col_row()
|
||||
check_linear_1d_base()
|
||||
|
||||
|
||||
@rerun_if_address_is_in_use()
|
||||
|
Reference in New Issue
Block a user