[shardformer] shardformer support opt models (#4091)

* [shardformer] shardformer support opt models

* [shardformer] shardformer support opt models, fix

* [shardformer] shardformer support opt models, fix

* [shardformer] shardformer support opt models, fix
This commit is contained in:
jiangmingyan
2023-06-27 17:39:29 +08:00
committed by Frank Lee
parent d33a44e8c3
commit ac80937138
6 changed files with 264 additions and 10 deletions

View File

@@ -11,14 +11,47 @@ SEQ_LENGTH = 16
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
input_ids = torch.Tensor([[1, 15043, 29892, 590, 11203, 338, 274, 1082]]).long()
attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1]]).long()
return dict(input_ids=input_ids, attention_mask=attention_mask)
output_transform_fn = lambda x: x
def data_gen_for_causal_lm():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
labels = data['input_ids'].clone()
data['labels'] = labels
return data
config = transformers.OPTConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4)
def data_gen_for_sequence_classification():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
labels = data['input_ids'].clone()
data['labels'] = torch.tensor([1])
return data
def data_gen_for_question_answering():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
data['start_positions'] = torch.tensor([0])
data['end_positions'] = torch.tensor([1])
return data
output_transform_fn = lambda x: x
loss_fn_for_opt_model = lambda x: x.last_hidden_state.mean()
loss_fn_for_lm = lambda x: x.loss
config = transformers.OPTConfig(
hidden_size=128,
num_hidden_layers=2,
num_attention_heads=4,
dropout=0,
)
# register the following models
# transformers.OPTModel,
@@ -27,9 +60,23 @@ model_zoo.register(name='transformers_opt',
model_fn=lambda: transformers.OPTModel(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_opt_model,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_opt_for_causal_lm',
model_fn=lambda: transformers.OPTForCausalLM(config),
data_gen_fn=data_gen,
data_gen_fn=data_gen_for_causal_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_lm,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_opt_for_question_answering',
model_fn=lambda: transformers.OPTForQuestionAnswering(config),
data_gen_fn=data_gen_for_question_answering,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_lm,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_opt_for_sequence_classification',
model_fn=lambda: transformers.OPTForSequenceClassification(config),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_lm,
model_attribute=ModelAttribute(has_control_flow=True))