mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 11:32:10 +00:00
[shardformer] shardformer support opt models (#4091)
* [shardformer] shardformer support opt models * [shardformer] shardformer support opt models, fix * [shardformer] shardformer support opt models, fix * [shardformer] shardformer support opt models, fix
This commit is contained in:
@@ -25,7 +25,6 @@ def run_forward(original_model, sharded_model, data_gen_fn, output_transform_fn,
|
||||
# switch to train mode
|
||||
original_model.train()
|
||||
sharded_model.train()
|
||||
|
||||
# run forward
|
||||
org_output = original_model(**data)
|
||||
org_output = output_transform_fn(org_output)
|
||||
@@ -34,5 +33,4 @@ def run_forward(original_model, sharded_model, data_gen_fn, output_transform_fn,
|
||||
shard_output = sharded_model(**data)
|
||||
shard_output = output_transform_fn(shard_output)
|
||||
shard_loss = loss_fn(shard_output)
|
||||
|
||||
return org_output, org_loss, shard_output, shard_loss
|
||||
return org_output, org_loss, shard_output, shard_loss
|
67
tests/test_shardformer/test_model/test_shard_opt.py
Normal file
67
tests/test_shardformer/test_model/test_shard_opt.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import copy
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
check_state_dict_equal,
|
||||
clear_cache_before_run,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, run_forward
|
||||
|
||||
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
|
||||
output_transform_fn, loss_fn)
|
||||
assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values'], rtol=1e-4)
|
||||
|
||||
# run backward
|
||||
org_loss.backward()
|
||||
shard_loss.backward()
|
||||
|
||||
# check grad
|
||||
if hasattr(org_model, 'model'):
|
||||
opt_model = org_model.model
|
||||
shard_opt_model = sharded_model.model
|
||||
else:
|
||||
opt_model = org_model
|
||||
shard_opt_model = sharded_model
|
||||
|
||||
org_grad = opt_model.decoder.layers[0].self_attn.q_proj.weight.grad
|
||||
shard_grad = shard_opt_model.decoder.layers[0].self_attn.q_proj.weight.grad
|
||||
|
||||
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
|
||||
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
|
||||
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
||||
assert torch.allclose(org_loss, shard_loss,
|
||||
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
||||
assert torch.allclose(org_grad, all_shard_grad,
|
||||
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
|
||||
|
||||
|
||||
def check_OPTModel(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(world_size, model_fn)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_OPTModel():
|
||||
spawn(check_OPTModel, 4)
|
Reference in New Issue
Block a user