[NFC] fix typo applications/ and colossalai/ (#3735)

This commit is contained in:
digger-yu
2023-05-15 11:46:25 +08:00
committed by GitHub
parent 1f73609adb
commit ad6460cf2c
10 changed files with 17 additions and 17 deletions

View File

@@ -18,7 +18,7 @@ For SFT training, just call train_peft_sft.py
Its arguments are almost identical to train_sft.py instead adding a new eval_dataset if you have a eval_dataset file. The data file is just a plain datafile, please check the format in the easy_dataset.py.
For stage-3 rlhf training, call train_peft_prompts.py.
Its arguments are almost idential to train_prompts.py. The only difference is that I use text files to indicate the prompt and pretrained data file. The models are included in easy_models.py. Currently only bloom models are tested, but technically gpt2/opt/llama should be supported.
Its arguments are almost identical to train_prompts.py. The only difference is that I use text files to indicate the prompt and pretrained data file. The models are included in easy_models.py. Currently only bloom models are tested, but technically gpt2/opt/llama should be supported.
# Dataformat
Please refer the formats in test_sft.txt, test_prompts.txt, test_pretrained.txt.

View File

@@ -75,7 +75,7 @@ E.g. you can set `export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH`.
Please ensure you have downloaded HF-format model weights of LLaMA models first.
Then you can follow [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). This lib provides efficient CUDA kernels and weight convertion script.
Then you can follow [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). This lib provides efficient CUDA kernels and weight conversion script.
After installing this lib, we may convert the original HF-format LLaMA model weights to 4-bit version.

View File

@@ -123,7 +123,7 @@ if __name__ == "__main__":
start = time()
for instruction in instructions:
print(f"Instruction: {instruction}")
resp, tokens = evaluate(model, tokenizer, instruction, temparature=0.2, num_beams=1)
resp, tokens = evaluate(model, tokenizer, instruction, temperature=0.2, num_beams=1)
total_tokens += tokens
print(f"Response: {resp}")
print('\n----------------------------\n')