[bf16] add bf16 support (#3882)

* [bf16] add bf16 support for fused adam (#3844)

* [bf16] fused adam kernel support bf16

* [test] update fused adam kernel test

* [test] update fused adam test

* [bf16] cpu adam and hybrid adam optimizers support bf16 (#3860)

* [bf16] implement mixed precision mixin and add bf16 support for low level zero (#3869)

* [bf16] add mixed precision mixin

* [bf16] low level zero optim support bf16

* [text] update low level zero test

* [text] fix low level zero grad acc test

* [bf16] add bf16 support for gemini (#3872)

* [bf16] gemini support bf16

* [test] update gemini bf16 test

* [doc] update gemini docstring

* [bf16] add bf16 support for plugins (#3877)

* [bf16] add bf16 support for legacy zero (#3879)

* [zero] init context support bf16

* [zero] legacy zero support bf16

* [test] add zero bf16 test

* [doc] add bf16 related docstring for legacy zero
This commit is contained in:
Hongxin Liu
2023-06-05 15:58:31 +08:00
committed by GitHub
parent 07cb21142f
commit ae02d4e4f7
27 changed files with 738 additions and 525 deletions

View File

@@ -0,0 +1,91 @@
from abc import ABC, abstractmethod
import torch
from torch import Tensor
class MixedPrecisionMixin(ABC):
"""A helper class for mixed precision training. This mixin is used in mixed precision optimizers.
Attributes:
dtype (torc.dtype): The expected dtype of the gradients.
Examples:
```python
class MyMixedPrecisionOptimizer(OptimizerWrapper):
def __init__(self, optim: Optimizer):
super().__init__(optim)
self.mixed_precision = MixedPrecisionMixin()
def backward(self, loss):
loss = self.mixed_precision.pre_backward(loss)
loss.backward()
def backward_by_grad(self, tensor, grad):
grad = self.mixed_precision.pre_backward_by_grad(tensor, grad)
tensor.backward(grad)
def step(self):
if self.mixed_precision.should_skip_step():
self.zero_grad()
return
div_scale = self.mixed_precision.get_grad_div_scale()
# maybe clip grad here
# maybe scale grad here
self.optim.step()
def zero_grad(self):
self.mixed_precision.pre_zero_grad()
return self.optim.zero_grad()
```
"""
dtype: torch.dtype
@abstractmethod
def pre_backward(self, loss: Tensor) -> Tensor:
"""Called before backward.
Args:
loss (Tensor): Loss value.
Returns:
Tensor: Loss value (possibly scaled).
"""
pass
@abstractmethod
def pre_backward_by_grad(self, tensor: Tensor, grad: Tensor) -> Tensor:
"""Called before backward by grad. This is helpful for pipeline parallelism.
Args:
tensor (Tensor): Tensor to backward.
grad (Tensor): Gradient of the tensor.
Returns:
Tensor: Gradient of the tensor (possibly scaled).
"""
pass
@abstractmethod
def should_skip_step(self) -> bool:
"""Called before step.
Returns:
bool: Whether to skip the step.
"""
pass
@abstractmethod
def pre_zero_grad(self) -> None:
"""Called before zero_grad.
"""
pass
@abstractmethod
def get_grad_div_scale(self) -> float:
"""Called before step or clip_grad. To keep computation efficiency, this method does not (maybe) unscale grads.
Returns:
float: A divisor for gradient clipping or step.
"""
pass