mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 12:01:39 +00:00
[bf16] add bf16 support (#3882)
* [bf16] add bf16 support for fused adam (#3844) * [bf16] fused adam kernel support bf16 * [test] update fused adam kernel test * [test] update fused adam test * [bf16] cpu adam and hybrid adam optimizers support bf16 (#3860) * [bf16] implement mixed precision mixin and add bf16 support for low level zero (#3869) * [bf16] add mixed precision mixin * [bf16] low level zero optim support bf16 * [text] update low level zero test * [text] fix low level zero grad acc test * [bf16] add bf16 support for gemini (#3872) * [bf16] gemini support bf16 * [test] update gemini bf16 test * [doc] update gemini docstring * [bf16] add bf16 support for plugins (#3877) * [bf16] add bf16 support for legacy zero (#3879) * [zero] init context support bf16 * [zero] legacy zero support bf16 * [test] add zero bf16 test * [doc] add bf16 related docstring for legacy zero
This commit is contained in:
@@ -93,8 +93,7 @@ class CPUAdam(NVMeOptimizer):
|
||||
bias_correction1,
|
||||
bias_correction2,
|
||||
use_adamw=False):
|
||||
# FIXME(ver217): remove the below line when replace torch adam with fused adam
|
||||
grad = grad.float()
|
||||
grad = grad.to(data.dtype)
|
||||
|
||||
if weight_decay != 0:
|
||||
if use_adamw:
|
||||
@@ -133,10 +132,12 @@ class CPUAdam(NVMeOptimizer):
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
|
||||
# FIXME(ver217): CPU adam kernel only supports fp32 states now
|
||||
assert p.dtype is torch.float, "CPUAdam only support fp32 parameters"
|
||||
# gradient momentums
|
||||
state['exp_avg'] = torch.zeros_like(p, dtype=torch.float, device=target_device)
|
||||
state['exp_avg'] = torch.zeros_like(p, device=target_device)
|
||||
# gradient variances
|
||||
state['exp_avg_sq'] = torch.zeros_like(p, dtype=torch.float, device=target_device)
|
||||
state['exp_avg_sq'] = torch.zeros_like(p, device=target_device)
|
||||
self._post_state_init(p)
|
||||
|
||||
state['step'] += 1
|
||||
@@ -147,9 +148,17 @@ class CPUAdam(NVMeOptimizer):
|
||||
assert state['exp_avg'].device.type == 'cpu', "exp_avg should stay on cpu"
|
||||
assert state['exp_avg_sq'].device.type == 'cpu', "exp_avg should stay on cpu"
|
||||
self._pre_update(p, 'exp_avg', 'exp_avg_sq')
|
||||
self.cpu_adam_op.step(state['step'], group['lr'], beta1, beta2, group['eps'], group['weight_decay'],
|
||||
group['bias_correction'], p.data, p.grad.data, state['exp_avg'],
|
||||
state['exp_avg_sq'], div_scale)
|
||||
if p.grad.dtype is torch.bfloat16:
|
||||
# cpu adam kernel does not support bf16 now
|
||||
bias_correction1 = 1 - beta1**state['step']
|
||||
bias_correction2 = 1 - beta2**state['step']
|
||||
self.torch_adam_update(p.data, p.grad.data, state['exp_avg'], state['exp_avg_sq'], group['lr'],
|
||||
beta1, beta2, group['eps'], group['weight_decay'], bias_correction1,
|
||||
bias_correction2, self.adamw_mode)
|
||||
else:
|
||||
self.cpu_adam_op.step(state['step'], group['lr'], beta1, beta2, group['eps'],
|
||||
group['weight_decay'], group['bias_correction'], p.data, p.grad.data,
|
||||
state['exp_avg'], state['exp_avg_sq'], div_scale)
|
||||
self._post_update(p, 'exp_avg', 'exp_avg_sq')
|
||||
elif target_device.type == 'cuda':
|
||||
assert div_scale == -1, "div_scale should remain default"
|
||||
|
Reference in New Issue
Block a user