[bf16] add bf16 support (#3882)

* [bf16] add bf16 support for fused adam (#3844)

* [bf16] fused adam kernel support bf16

* [test] update fused adam kernel test

* [test] update fused adam test

* [bf16] cpu adam and hybrid adam optimizers support bf16 (#3860)

* [bf16] implement mixed precision mixin and add bf16 support for low level zero (#3869)

* [bf16] add mixed precision mixin

* [bf16] low level zero optim support bf16

* [text] update low level zero test

* [text] fix low level zero grad acc test

* [bf16] add bf16 support for gemini (#3872)

* [bf16] gemini support bf16

* [test] update gemini bf16 test

* [doc] update gemini docstring

* [bf16] add bf16 support for plugins (#3877)

* [bf16] add bf16 support for legacy zero (#3879)

* [zero] init context support bf16

* [zero] legacy zero support bf16

* [test] add zero bf16 test

* [doc] add bf16 related docstring for legacy zero
This commit is contained in:
Hongxin Liu
2023-06-05 15:58:31 +08:00
committed by GitHub
parent 07cb21142f
commit ae02d4e4f7
27 changed files with 738 additions and 525 deletions

View File

@@ -0,0 +1,131 @@
# This test checks adam kernels
# Baseline is pure fp32 torch adam optimizer
import math
from abc import abstractmethod
from typing import Type
import pytest
import torch
from torch import Tensor
from colossalai.utils import get_current_device, multi_tensor_applier
_FUSED_ALLOWED_P_G_TYPES = [(torch.float, torch.half), (torch.float, torch.float), (torch.half, torch.float),
(torch.half, torch.half), (torch.bfloat16, torch.float), (torch.float, torch.bfloat16),
(torch.bfloat16, torch.bfloat16)]
_CPU_ALLOWED_P_G_TYPES = [(torch.float, torch.half), (torch.float, torch.float), (torch.half, torch.float),
(torch.half, torch.half)]
class AdamKernel:
def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None:
self.lr = lr
self.beta1 = beta1
self.beta2 = beta2
self.eps = eps
self.weight_decay = weight_decay
self.use_adamw = use_adamw
@abstractmethod
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
pass
class TorchAdamKernel(AdamKernel):
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
bias_correction1 = 1 - self.beta1**step
bias_correction2 = 1 - self.beta2**step
if self.weight_decay != 0:
if self.use_adamw:
# Perform stepweight decay
param.mul_(1 - self.lr * self.weight_decay)
else:
grad = grad.add(param, alpha=self.weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(self.beta1).add_(grad, alpha=1 - self.beta1)
exp_avg_sq.mul_(self.beta2).addcmul_(grad, grad, value=1 - self.beta2)
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(self.eps)
step_size = self.lr / bias_correction1
param.addcdiv_(exp_avg, denom, value=-step_size)
class FusedAdamKernel(AdamKernel):
def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None:
super().__init__(lr, beta1, beta2, eps, weight_decay, use_adamw)
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
self.fused_adam = fused_optim.multi_tensor_adam
self.dummy_overflow_buf = torch.cuda.IntTensor([0])
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
multi_tensor_applier(self.fused_adam, self.dummy_overflow_buf, [[grad], [param], [exp_avg], [exp_avg_sq]],
self.lr, self.beta1, self.beta2, self.eps, step, self.use_adamw, True, self.weight_decay,
-1)
class CPUAdamKernel(AdamKernel):
def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None:
super().__init__(lr, beta1, beta2, eps, weight_decay, use_adamw)
from colossalai.kernel.op_builder import CPUAdamBuilder
cpu_optim = CPUAdamBuilder().load()
self.cpu_adam_op = cpu_optim.CPUAdamOptimizer(lr, beta1, beta2, eps, weight_decay, use_adamw)
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
self.cpu_adam_op.step(step, self.lr, self.beta1, self.beta2, self.eps, self.weight_decay, True, param.view(-1),
grad.view(-1), exp_avg.view(-1), exp_avg_sq.view(-1), -1)
def check_adam_kernel(kernel: Type[AdamKernel], adamw: bool, weight_decay: float, p_dtype: torch.dtype,
g_dtype: torch.dtype, device: torch.device, n_steps: int, rtol: float, atol: float):
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
torch_adam = TorchAdamKernel(lr, beta1, beta2, eps, weight_decay, adamw)
adam_kernel = kernel(lr, beta1, beta2, eps, weight_decay, adamw)
master_p = torch.rand(64, device=device)
master_g = torch.rand_like(master_p)
master_exp_avg = torch.zeros_like(master_p)
master_exp_avg_sq = torch.zeros_like(master_p)
p = master_p.clone().to(p_dtype)
g = master_g.clone().to(g_dtype)
exp_avg = master_exp_avg.clone()
exp_avg_sq = master_exp_avg_sq.clone()
for step in range(1, 1 + n_steps):
torch_adam.update(step, master_p, master_g, master_exp_avg, master_exp_avg_sq)
adam_kernel.update(step, p, g, exp_avg, exp_avg_sq)
# if overflow, the weight won't be updated. so there will be no nan in p
assert not torch.isnan(p).any()
assert torch.allclose(master_p, p.float(), rtol=rtol, atol=atol)
@pytest.mark.parametrize('adamw', [False, True])
@pytest.mark.parametrize('weight_decay', [0.0, 0.1])
@pytest.mark.parametrize('p_dtype, g_dtype', _FUSED_ALLOWED_P_G_TYPES)
def test_fused_adam_kernel(adamw, weight_decay, p_dtype, g_dtype):
rtol, atol = 1e-5, 1e-8
if p_dtype is torch.float16 or g_dtype is torch.float16:
rtol, atol = 1e-3, 1e-3
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16:
rtol, atol = 4e-3, 4e-3
check_adam_kernel(FusedAdamKernel, adamw, weight_decay, p_dtype, g_dtype, get_current_device(), 3, rtol, atol)
@pytest.mark.parametrize('adamw', [False, True])
@pytest.mark.parametrize('weight_decay', [0.0, 0.1])
@pytest.mark.parametrize('p_dtype, g_dtype', _CPU_ALLOWED_P_G_TYPES)
def test_cpu_adam_kernel(adamw, weight_decay, p_dtype, g_dtype):
rtol, atol = 1e-5, 1e-8
if p_dtype is torch.float16 or g_dtype is torch.float16:
rtol, atol = 1e-3, 1e-3
check_adam_kernel(CPUAdamKernel, adamw, weight_decay, p_dtype, g_dtype, torch.device('cpu'), 3, rtol, atol)

View File

@@ -0,0 +1,86 @@
from copy import deepcopy
from typing import Type, Union
import pytest
import torch
import torch.nn as nn
from torch.optim import Adam, AdamW
from colossalai.nn.optimizer import CPUAdam, FusedAdam, HybridAdam
from tests.kit.model_zoo import model_zoo
_ALLOWED_OPTIM_DEVICES = [
(FusedAdam, torch.device('cuda:0')),
(CPUAdam, torch.device('cpu')),
(CPUAdam, torch.device('cuda:0')),
(HybridAdam, torch.device('cpu')),
(HybridAdam, torch.device('cuda:0')),
]
_ALLOWED_P_G_TYPES = [
(torch.float, torch.float), # pure fp32
(torch.float, torch.half), # fp16 amp
(torch.float, torch.bfloat16), # bfloat16 amp
# (torch.half, torch.half), # FIXME(ver217): cpu adam kernel does not support pure fp16
# (torch.bfloat16, torch.bfloat16), # FIXME(ver217): cpu adam kernel does not support pure bfloat16
]
N_STEPS = 3
def setup_param_groups(bert_model: nn.Module) -> list:
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in bert_model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": 0.1,
},
{
"params": [p for n, p in bert_model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
return optimizer_grouped_parameters
def set_grad(model: nn.Module, torch_model: nn.Module, g_dtype: torch.dtype) -> None:
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
torch_p.grad = torch.rand_like(torch_p)
# avoid inconsistent grad and param dtype error
orig_p = p.data
p.data = torch_p.grad.clone().to(g_dtype)
p.grad = p.data
p.data = orig_p
@pytest.mark.parametrize('optim_cls, device', _ALLOWED_OPTIM_DEVICES)
@pytest.mark.parametrize('adamw', [False, True])
@pytest.mark.parametrize('p_dtype, g_dtype', _ALLOWED_P_G_TYPES)
def test_adam_optim_on_bert(optim_cls: Union[Type[FusedAdam], Type[CPUAdam], Type[HybridAdam]], device: torch.device,
adamw: bool, p_dtype: torch.dtype, g_dtype: torch.dtype) -> None:
model_fn, *_ = next(iter(model_zoo.get_sub_registry('transformers_bert_for_sequence_classification').values()))
torch_model = model_fn().to(device)
model = deepcopy(torch_model).to(p_dtype)
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
torch_optim_cls = AdamW if adamw else Adam
torch_optim = torch_optim_cls(setup_param_groups(torch_model), lr=lr, betas=(beta1, beta2), eps=eps)
optim = optim_cls(setup_param_groups(model), lr=lr, betas=(beta1, beta2), eps=eps, adamw_mode=adamw)
rtol, atol = 1e-5, 1e-5
if p_dtype is torch.float16 or g_dtype is torch.float16:
rtol, atol = 2e-3, 2e-3
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16:
rtol, atol = 4e-3, 4e-3
for _ in range(N_STEPS):
set_grad(model, torch_model, g_dtype)
torch_optim.step()
optim.step()
torch_optim.zero_grad()
optim.zero_grad()
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
# if overflow, the weight won't be updated. so there will be no nan in p
assert not torch.isnan(p).any()
assert torch.allclose(p.float(), torch_p, rtol=rtol, atol=atol)

View File

@@ -1,121 +0,0 @@
import math
import torch
from colossalai.testing import clear_cache_before_run, parameterize
def torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
param,
grad,
exp_avg,
exp_avg_sq,
use_adamw,
):
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
if weight_decay != 0:
if use_adamw:
# Perform stepweight decay
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
step_size = lr / bias_correction1
param.addcdiv_(exp_avg, denom, value=-step_size)
def assertLess(data_diff, threshold, msg):
assert data_diff < threshold, msg
def assertTrue(condition, msg):
assert condition, msg
@clear_cache_before_run()
@parameterize('adamw', [True, False])
@parameterize('step', [1, 2])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_cpu_adam(adamw, step, p_dtype, g_dtype):
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
weight_decay = 0
for i in range(3):
p_data = torch.rand(64, dtype=p_dtype)
p_data_copy = p_data.clone().float()
p_grad = torch.rand(64, dtype=g_dtype)
p_grad_copy = p_grad.clone().float()
exp_avg = torch.rand(p_data.shape)
exp_avg_copy = exp_avg.clone()
exp_avg_sq = torch.rand(p_data.shape)
exp_avg_sq_copy = exp_avg_sq.clone()
from colossalai.kernel.op_builder import CPUAdamBuilder
cpu_optim = CPUAdamBuilder().load()
cpu_adam_op = cpu_optim.CPUAdamOptimizer(lr, beta1, beta2, eps, weight_decay, adamw)
cpu_adam_op.step(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
True,
p_data.view(-1), # fp32 data
p_grad.view(-1), # fp32 grad
exp_avg.view(-1),
exp_avg_sq.view(-1),
-1,
)
torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
p_data_copy, # fp32 data
p_grad_copy, # fp32 grad
exp_avg_copy,
exp_avg_sq_copy,
adamw,
)
var = p_data_copy - p_data
data_diff = torch.max(torch.abs(var))
threshold = 1e-3
assertLess(
data_diff,
threshold,
f"p_data diff {data_diff}. failed check, step {step}, lr {lr}, eps "
f"{eps} beta1 {beta1} beta2 {beta2} weight_decay {weight_decay} p_dtype {p_dtype}, g_dtype {g_dtype}",
)
max_grad_diff = torch.max(torch.abs(p_grad_copy - p_grad))
assertTrue(max_grad_diff < threshold, f"diff {max_grad_diff}")
max_exp_avg_diff = torch.max(torch.abs(exp_avg_copy - exp_avg))
assertTrue(max_exp_avg_diff < threshold, f"max_exp_avg_diff {max_exp_avg_diff}")
max_exp_avg_sq_diff = torch.max(torch.abs(exp_avg_sq_copy - exp_avg_sq))
assertTrue(max_exp_avg_sq_diff < threshold, f"max_exp_avg_sq_diff {max_exp_avg_sq_diff}")
if __name__ == '__main__':
test_cpu_adam()

View File

@@ -1,64 +0,0 @@
import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.optim.adam import Adam
from colossalai.nn.optimizer.fused_adam import FusedAdam
from colossalai.testing import clear_cache_before_run, parameterize
class FC(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc = nn.Sequential(nn.Linear(64, 64))
def forward(self, x):
return self.fc(x)
@clear_cache_before_run()
@parameterize('adamw', [False, True])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, p_dtype, g_dtype):
model = FC().cuda().to(p_dtype)
state = model.state_dict()
model_copy = FC().cuda().to(p_dtype)
model_copy.load_state_dict(state.copy())
if adamw:
optim = FusedAdam(model.parameters(), lr=1e-3, adamw_mode=True)
torch_optim = AdamW(model_copy.parameters(), lr=1e-3)
else:
optim = FusedAdam(model.parameters(), lr=1e-3)
torch_optim = Adam(model_copy.parameters(), lr=1e-3)
data = torch.rand(1024, 64).cuda().to(p_dtype)
data_copy = data.clone()
label = torch.rand(1024, 64).cuda().to(p_dtype)
for d, l in zip(data, label):
y = model(d)
loss = ((l - y)**2).sum()
optim.zero_grad()
loss.backward()
if p_dtype != g_dtype:
for i in range(len(optim.param_groups[0]['params'])):
optim.param_groups[0]['params'][i].grad.data = optim.param_groups[0]['params'][i].grad.data.to(g_dtype)
optim.step()
for d, l in zip(data_copy, label):
y = model_copy(d)
loss = ((l - y)**2).sum()
torch_optim.zero_grad()
loss.backward()
torch_optim.step()
assert len(optim.param_groups[0]['params']) == len(torch_optim.param_groups[0]['params'])
for i in range(len(optim.param_groups[0]['params'])):
if torch.isnan(optim.param_groups[0]['params'][i]).any() \
or torch.isnan(torch_optim.param_groups[0]['params'][i]).any():
continue
assert torch.allclose(optim.param_groups[0]['params'][i], torch_optim.param_groups[0]['params'][i], 2e-3, 2e-3)

View File

@@ -1,95 +0,0 @@
import math
import torch
import torch.nn as nn
from numpy import dtype
from colossalai.testing import clear_cache_before_run, parameterize
from colossalai.utils import multi_tensor_applier
def torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
param,
grad,
exp_avg,
exp_avg_sq,
use_adamw,
):
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
if weight_decay != 0:
if use_adamw:
# Perform stepweight decay
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
step_size = lr / bias_correction1
param.addcdiv_(exp_avg, denom, value=-step_size)
@clear_cache_before_run()
@parameterize('adamw', [False, True])
@parameterize('step', [1, 2])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, step, p_dtype, g_dtype):
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
fused_adam = fused_optim.multi_tensor_adam
dummy_overflow_buf = torch.cuda.IntTensor([0])
count = 0
for i in range(3):
p = torch.rand(64, dtype=p_dtype).cuda()
p_copy = p.clone().float()
g = torch.rand(p.shape, dtype=g_dtype).cuda()
g_copy = g.clone().float()
m = torch.rand(p.shape).cuda()
m_copy = m.clone()
v = torch.rand(p.shape).cuda()
v_copy = v.clone()
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
weight_decay = 0
multi_tensor_applier(fused_adam, dummy_overflow_buf, [[g], [p], [m], [v]], lr, beta1, beta2, eps, step, adamw,
True, weight_decay, -1)
torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
p_copy, # fp32 data
g_copy, # fp32 grad
m_copy,
v_copy,
adamw,
)
if torch.isnan(p).any() or torch.isnan(p_copy).any():
count += 1
continue
assert count < 200, "too many nans"
assert torch.allclose(p.to(torch.float), p_copy.to(torch.float), 1e-5,
1e-5), f"failed check, adamw {adamw}, p_dtype {p_dtype}, g_dtype {g_dtype}"

View File

@@ -1,42 +0,0 @@
import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.optim.adam import Adam
from colossalai.nn.optimizer.hybrid_adam import HybridAdam
from colossalai.testing import clear_cache_before_run, parameterize
RE = 3
@clear_cache_before_run()
@parameterize('adamw', [False, True])
@parameterize('device', ['cpu', 'cuda:0'])
@parameterize('p_dtype', [torch.float])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, device, p_dtype, g_dtype):
rng_state = torch.get_rng_state()
p = nn.Parameter(torch.rand(64).to(device, p_dtype))
torch.set_rng_state(rng_state)
p_copy = nn.Parameter(torch.rand(64).to(device).float())
if adamw:
optim = HybridAdam([p], lr=1e-3, adamw_mode=True)
torch_optim = AdamW([p_copy], lr=1e-3)
else:
optim = HybridAdam([p], lr=1e-3)
torch_optim = Adam([p_copy], lr=1e-3)
print(f"adaw mode {adamw}, device {device}, p_dtype {p_dtype}, g_dtype {g_dtype}")
for i in range(RE):
p.grad = torch.rand(64).to(device, p_dtype)
p_copy.grad = p.grad.clone().float()
p.grad.data = p.grad.data.to(g_dtype)
optim.step()
torch_optim.step()
if torch.isnan(p.data).any() or torch.isnan(p_copy.data).any():
continue
assert torch.allclose(p.data, p_copy.data, 1e-4, 1e-2), \
f"adaw mode {adamw}, device {device}, p_dtype {p_dtype}, g_dtype {g_dtype}"

View File

@@ -21,23 +21,40 @@ TEST_MODELS = ['gpt2']
# these models are too small, all parameters in these models are compacted into one chunk
EXAMPLE_MODELS = ['albert', 'beit', 'bert', 'hanging_param_model', 'nested_model', 'repeated_computed_layers']
# bfloat16 cannot represent them exactly
BF16_IGNORED_KEYS = [
'albert.embeddings.word_embeddings.weight',
'albert.embeddings.position_embeddings.weight',
'masked_bias',
]
def check_param(model: ZeroDDP, torch_model: torch.nn.Module):
zero_dict = model.state_dict(only_rank_0=False)
def check_param(model: ZeroDDP, torch_model: torch.nn.Module, dtype: torch.dtype):
zero_dict = model.state_dict(only_rank_0=False, dtype=dtype)
torch_dict = torch_model.state_dict()
for key, value in torch_dict.items():
# key is 'module.model.PARAMETER', so we truncate it
key = key[7:]
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
temp_zero_value = zero_dict[key].to(device=value.device)
if dtype is torch.bfloat16 and any(k in key for k in BF16_IGNORED_KEYS):
continue
rtol, atol = 1e-3, 4e-3
if dtype is torch.bfloat16:
rtol, atol = 4e-3, 8e-3
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3)
assert_close(value.float(),
temp_zero_value.float(),
rtol=rtol,
atol=atol,
msg=lambda s: s + f'\n{key}\n{temp_zero_value.dtype}')
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
@parameterize('model_name', TEST_MODELS)
def exam_model_step(placement_policy, model_name: str):
@parameterize('mixed_precision', [torch.half, torch.bfloat16])
def exam_model_step(placement_policy, model_name: str, mixed_precision: torch.dtype):
set_seed(42)
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
@@ -65,7 +82,7 @@ def exam_model_step(placement_policy, model_name: str):
init_device = None
chunk_manager = ChunkManager(config_dict, init_device=init_device)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager, pin_memory=True)
model = ZeroDDP(model, gemini_manager, pin_memory=True, mixed_precision=mixed_precision)
optimizer = HybridAdam(model.parameters(), lr=1e-3)
zero_optim = ZeroOptimizer(optimizer, model, initial_scale=128)
@@ -74,6 +91,7 @@ def exam_model_step(placement_policy, model_name: str):
torch_model.eval()
set_seed(dist.get_rank() * 3 + 128)
rtol, atol = 1e-4, 1e-5
for i, (input_ids, label) in enumerate(train_dataloader):
if i > 2:
break
@@ -83,17 +101,18 @@ def exam_model_step(placement_policy, model_name: str):
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
assert_close(torch_loss, loss)
assert_close(torch_loss, loss, rtol=rtol, atol=atol)
zero_optim.step()
torch_optim.step()
check_param(model, torch_model)
check_param(model, torch_model, mixed_precision)
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
@parameterize('model_name', EXAMPLE_MODELS)
def exam_tiny_example(placement_policy, model_name: str):
@parameterize('mixed_precision', [torch.half, torch.bfloat16])
def exam_tiny_example(placement_policy, model_name: str, mixed_precision: torch.dtype):
set_seed(2008)
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
@@ -113,7 +132,7 @@ def exam_tiny_example(placement_policy, model_name: str):
chunk_manager = init_chunk_manager(model=model, init_device=get_current_device(), search_range_mb=1)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager, pin_memory=True)
model = ZeroDDP(model, gemini_manager, pin_memory=True, mixed_precision=mixed_precision)
optimizer = HybridAdam(model.parameters(), lr=1e-3)
zero_optim = ZeroOptimizer(optimizer, model, initial_scale=2)
@@ -121,6 +140,9 @@ def exam_tiny_example(placement_policy, model_name: str):
torch_model.eval()
set_seed(dist.get_rank() * 3 + 128)
rtol, atol = 1.5e-6, 2e-5
if mixed_precision is torch.bfloat16:
rtol, atol = 2e-3, 2e-3
for i, (input_ids, label) in enumerate(train_dataloader):
if i > 2:
break
@@ -133,12 +155,12 @@ def exam_tiny_example(placement_policy, model_name: str):
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
assert_close(torch_loss, loss, rtol=1.5e-6, atol=2e-5) # atol should be 2e-5 for torch lower than 1.12
assert_close(torch_loss, loss, rtol=rtol, atol=atol) # atol should be 2e-5 for torch lower than 1.12
zero_optim.step()
torch_optim.step()
check_param(model, torch_model)
check_param(model, torch_model, mixed_precision)
def run_dist(rank, world_size, port):

View File

@@ -16,7 +16,11 @@ from colossalai.zero.low_level._utils import has_inf_or_nan
from tests.components_to_test.registry import non_distributed_component_funcs
def run_dist(rank, world_size, port, parallel_config):
def run_dist(rank, world_size, port, parallel_config, bf16):
is_mp_config = parallel_config == MP_PARALLEL_CONFIG
is_zero_config = parallel_config == ZERO_PARALLEL_CONFIG
if bf16:
parallel_config['zero']['model_config']['bf16'] = True
colossalai.launch(config=parallel_config,
rank=rank,
world_size=world_size,
@@ -30,7 +34,8 @@ def run_dist(rank, world_size, port, parallel_config):
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
with ZeroInitContext(target_device=torch.cuda.current_device(),
shard_strategy=gpc.config.zero.model_config.shard_strategy,
shard_param=True):
shard_param=True,
bf16=bf16):
colo_model = model_builder(checkpoint=True)
colo_optimizer = optimizer_class(colo_model.parameters(), lr=1e-3)
@@ -38,7 +43,8 @@ def run_dist(rank, world_size, port, parallel_config):
optimizer=colo_optimizer,
criterion=criterion,
train_dataloader=train_dataloader)
torch_model = model_builder(checkpoint=True).half()
dtype = torch.bfloat16 if bf16 else torch.float16
torch_model = model_builder(checkpoint=True).to(dtype)
col_model_deepcopy(engine.model, torch_model)
torch_model = torch_model.cuda().float()
@@ -80,9 +86,9 @@ def run_dist(rank, world_size, port, parallel_config):
torch_optimizer.step()
i += 1
if parallel_config == MP_PARALLEL_CONFIG:
if is_mp_config:
check_params(torch_model, colo_model, loose=True)
elif parallel_config == ZERO_PARALLEL_CONFIG:
elif is_zero_config:
check_sharded_model_params(torch_model, colo_model, loose=True)
@@ -97,9 +103,10 @@ def test_mp_engine(world_size):
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
@pytest.mark.parametrize("bf16", [True, False])
@rerun_if_address_is_in_use()
def test_zero_engine(world_size):
spawn(run_dist, world_size, parallel_config=ZERO_PARALLEL_CONFIG)
def test_zero_engine(world_size, bf16):
spawn(run_dist, world_size, parallel_config=ZERO_PARALLEL_CONFIG, bf16=bf16)
if __name__ == '__main__':

View File

@@ -82,7 +82,6 @@ def exam_zero_1_2_grad_acc():
def exam_zero_1_grad_acc():
local_rank = torch.distributed.get_rank()
grad_scale = 32
seed_all(2008)
# create models
@@ -101,7 +100,6 @@ def exam_zero_1_grad_acc():
# level 1 and 2 will produce exactly the same results
zero_optimizer = LowLevelZeroOptimizer(zero_optimizer,
overlap_communication=False,
initial_scale=grad_scale,
reduce_bucket_size=262144,
clip_grad_norm=1.0)
@@ -128,9 +126,8 @@ def exam_zero_1_grad_acc():
if check_flag:
# check grad
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
unscale_grad = z1p.grad / grad_scale
# print(n, p.shape, torch.max(torch.abs(p.grad - unscale_grad)))
assert torch.equal(p.grad, unscale_grad)
assert torch.equal(p.grad, z1p.grad)
zero_optimizer._sync_grad()

View File

@@ -7,7 +7,7 @@ from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from colossalai.zero import LowLevelZeroOptimizer
@@ -25,15 +25,18 @@ class MlpModel(nn.Module):
return x
def half_close(a, b, loose=False):
def loose_close(a, b, dtype: torch.dtype = torch.float32):
rtol = None
atol = None
if loose:
if dtype is torch.float16:
rtol = 5e-2
atol = 5e-4
elif dtype is torch.bfloat16:
rtol = 4e-3
atol = 4e-3
a = a.detach().half()
b = b.detach().half()
a = a.detach().to(dtype)
b = b.detach().to(dtype)
assert_close(a, b, rtol=rtol, atol=atol)
@@ -96,7 +99,8 @@ def exam_zero_1_2():
assert torch.equal(z1p.data, z2p.data)
def exam_zero_1_torch_ddp():
@parameterize('dtype', [torch.float16, torch.bfloat16])
def exam_zero_1_torch_ddp(dtype: torch.dtype):
"""
In this test, two pairs of model and optimizers are created.
1. zero: use sharded optimizer and fp16 parameters
@@ -109,15 +113,10 @@ def exam_zero_1_torch_ddp():
seed_all(1453)
# create models
zero_model = MlpModel()
torch_model = copy.deepcopy(zero_model)
torch_model = MlpModel().cuda()
zero_model = copy.deepcopy(torch_model).to(dtype)
zero_model = zero_model.cuda().half()
torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0)
torch_model = torch_model.cuda()
# for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
# half_close(p.data, z1p.data)
torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0).cuda()
# create optimizer
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
@@ -137,11 +136,11 @@ def exam_zero_1_torch_ddp():
input_data = torch.rand(32, 128).cuda()
# zero-dp forward
zero_output = zero_model(input_data.half())
zero_output = zero_model(input_data.to(dtype))
# torch-ddp forward
torch_output = torch_model(input_data)
half_close(zero_output, torch_output, loose=True)
loose_close(zero_output, torch_output, dtype=dtype)
# zero-dp backward
zero_optimizer.backward(zero_output.mean().float(), sync_grad=False)
@@ -151,7 +150,7 @@ def exam_zero_1_torch_ddp():
# check grad
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
half_close(p.grad, z1p.grad, loose=True)
loose_close(p.grad, z1p.grad, dtype=dtype)
# zero-dp step
zero_optimizer._sync_grad()
@@ -163,7 +162,7 @@ def exam_zero_1_torch_ddp():
# check updated param
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
# print(n, torch.max(torch.abs(p.data - z1p.data)))
half_close(p.data, z1p.data, loose=True)
loose_close(p.data, z1p.data, dtype=dtype)
def run_dist(rank, world_size, port):