mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 19:13:01 +00:00
[bf16] add bf16 support (#3882)
* [bf16] add bf16 support for fused adam (#3844) * [bf16] fused adam kernel support bf16 * [test] update fused adam kernel test * [test] update fused adam test * [bf16] cpu adam and hybrid adam optimizers support bf16 (#3860) * [bf16] implement mixed precision mixin and add bf16 support for low level zero (#3869) * [bf16] add mixed precision mixin * [bf16] low level zero optim support bf16 * [text] update low level zero test * [text] fix low level zero grad acc test * [bf16] add bf16 support for gemini (#3872) * [bf16] gemini support bf16 * [test] update gemini bf16 test * [doc] update gemini docstring * [bf16] add bf16 support for plugins (#3877) * [bf16] add bf16 support for legacy zero (#3879) * [zero] init context support bf16 * [zero] legacy zero support bf16 * [test] add zero bf16 test * [doc] add bf16 related docstring for legacy zero
This commit is contained in:
@@ -82,7 +82,6 @@ def exam_zero_1_2_grad_acc():
|
||||
|
||||
def exam_zero_1_grad_acc():
|
||||
local_rank = torch.distributed.get_rank()
|
||||
grad_scale = 32
|
||||
seed_all(2008)
|
||||
|
||||
# create models
|
||||
@@ -101,7 +100,6 @@ def exam_zero_1_grad_acc():
|
||||
# level 1 and 2 will produce exactly the same results
|
||||
zero_optimizer = LowLevelZeroOptimizer(zero_optimizer,
|
||||
overlap_communication=False,
|
||||
initial_scale=grad_scale,
|
||||
reduce_bucket_size=262144,
|
||||
clip_grad_norm=1.0)
|
||||
|
||||
@@ -128,9 +126,8 @@ def exam_zero_1_grad_acc():
|
||||
if check_flag:
|
||||
# check grad
|
||||
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
||||
unscale_grad = z1p.grad / grad_scale
|
||||
# print(n, p.shape, torch.max(torch.abs(p.grad - unscale_grad)))
|
||||
assert torch.equal(p.grad, unscale_grad)
|
||||
assert torch.equal(p.grad, z1p.grad)
|
||||
|
||||
zero_optimizer._sync_grad()
|
||||
|
||||
|
@@ -7,7 +7,7 @@ from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from colossalai.zero import LowLevelZeroOptimizer
|
||||
|
||||
@@ -25,15 +25,18 @@ class MlpModel(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
def half_close(a, b, loose=False):
|
||||
def loose_close(a, b, dtype: torch.dtype = torch.float32):
|
||||
rtol = None
|
||||
atol = None
|
||||
if loose:
|
||||
if dtype is torch.float16:
|
||||
rtol = 5e-2
|
||||
atol = 5e-4
|
||||
elif dtype is torch.bfloat16:
|
||||
rtol = 4e-3
|
||||
atol = 4e-3
|
||||
|
||||
a = a.detach().half()
|
||||
b = b.detach().half()
|
||||
a = a.detach().to(dtype)
|
||||
b = b.detach().to(dtype)
|
||||
|
||||
assert_close(a, b, rtol=rtol, atol=atol)
|
||||
|
||||
@@ -96,7 +99,8 @@ def exam_zero_1_2():
|
||||
assert torch.equal(z1p.data, z2p.data)
|
||||
|
||||
|
||||
def exam_zero_1_torch_ddp():
|
||||
@parameterize('dtype', [torch.float16, torch.bfloat16])
|
||||
def exam_zero_1_torch_ddp(dtype: torch.dtype):
|
||||
"""
|
||||
In this test, two pairs of model and optimizers are created.
|
||||
1. zero: use sharded optimizer and fp16 parameters
|
||||
@@ -109,15 +113,10 @@ def exam_zero_1_torch_ddp():
|
||||
seed_all(1453)
|
||||
|
||||
# create models
|
||||
zero_model = MlpModel()
|
||||
torch_model = copy.deepcopy(zero_model)
|
||||
torch_model = MlpModel().cuda()
|
||||
zero_model = copy.deepcopy(torch_model).to(dtype)
|
||||
|
||||
zero_model = zero_model.cuda().half()
|
||||
torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0)
|
||||
torch_model = torch_model.cuda()
|
||||
|
||||
# for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
||||
# half_close(p.data, z1p.data)
|
||||
torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0).cuda()
|
||||
|
||||
# create optimizer
|
||||
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
||||
@@ -137,11 +136,11 @@ def exam_zero_1_torch_ddp():
|
||||
input_data = torch.rand(32, 128).cuda()
|
||||
|
||||
# zero-dp forward
|
||||
zero_output = zero_model(input_data.half())
|
||||
zero_output = zero_model(input_data.to(dtype))
|
||||
|
||||
# torch-ddp forward
|
||||
torch_output = torch_model(input_data)
|
||||
half_close(zero_output, torch_output, loose=True)
|
||||
loose_close(zero_output, torch_output, dtype=dtype)
|
||||
|
||||
# zero-dp backward
|
||||
zero_optimizer.backward(zero_output.mean().float(), sync_grad=False)
|
||||
@@ -151,7 +150,7 @@ def exam_zero_1_torch_ddp():
|
||||
|
||||
# check grad
|
||||
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
||||
half_close(p.grad, z1p.grad, loose=True)
|
||||
loose_close(p.grad, z1p.grad, dtype=dtype)
|
||||
|
||||
# zero-dp step
|
||||
zero_optimizer._sync_grad()
|
||||
@@ -163,7 +162,7 @@ def exam_zero_1_torch_ddp():
|
||||
# check updated param
|
||||
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
||||
# print(n, torch.max(torch.abs(p.data - z1p.data)))
|
||||
half_close(p.data, z1p.data, loose=True)
|
||||
loose_close(p.data, z1p.data, dtype=dtype)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
|
Reference in New Issue
Block a user