[shardformer] added embedding gradient check (#4124)

This commit is contained in:
Frank Lee
2023-06-30 16:16:44 +08:00
parent 44a190e6ac
commit ae035d305d
14 changed files with 255 additions and 74 deletions

View File

@@ -21,19 +21,43 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
org_loss.backward()
shard_loss.backward()
# check grad equality
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# check attention grad
org_grad = org_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad
shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
# check self attention embed
org_grad = org_model.encoder.block[0].layer[0].SelfAttention.relative_attention_bias.weight.grad
shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.relative_attention_bias.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=1)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
# check token embedding grad
org_grad = org_model.shared.weight.grad
# check weights are tied
if hasattr(org_model, 'lm_head'):
assert org_model.shared.weight.data.data_ptr() == org_model.lm_head.weight.data.data_ptr()
assert sharded_model.shared.weight.data.data_ptr() == sharded_model.lm_head.weight.data.data_ptr()
shard_grad = sharded_model.shared.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
def check_t5(rank, world_size, port):
disable_existing_loggers()
@@ -44,7 +68,6 @@ def check_t5(rank, world_size, port):
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
@@ -56,4 +79,4 @@ def test_t5():
if __name__ == "__main__":
test_t5()
test_t5()