[checkpointio] support non blocking pin load (#6172)

* [checkpointio] support non blocking pin load

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Hongxin Liu
2024-12-25 17:03:25 +08:00
committed by GitHub
parent 836992438f
commit af06d162cf
15 changed files with 484 additions and 174 deletions

View File

@@ -20,6 +20,7 @@ from torch.utils.data import DataLoader
from colossalai.accelerator import get_accelerator
from colossalai.checkpoint_io import CheckpointIndexFile, CheckpointIO
from colossalai.checkpoint_io.utils import (
create_pinned_state_dict,
get_optimizer_base_filenames,
get_shard_filename,
load_param_groups_into_optimizer,
@@ -145,7 +146,9 @@ class LowLevelZeroCheckpointIO(TorchDDPCheckpointIO):
else:
save_state_dict(state_dict, checkpoint, use_safetensors=False)
def load_unsharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint: str):
def load_unsharded_optimizer(
self, optimizer: OptimizerWrapper, checkpoint: str, low_cpu_mem_mode: bool = True, num_threads: int = 1
):
use_async = checkpoint.endswith(".safetensors")
if use_async:
from colossalai.utils.safetensors import load_flat
@@ -153,6 +156,8 @@ class LowLevelZeroCheckpointIO(TorchDDPCheckpointIO):
checkpoint = load_flat(checkpoint)
else:
checkpoint = load_state_dict(checkpoint)
if not low_cpu_mem_mode:
checkpoint = create_pinned_state_dict(checkpoint, empty=False, num_threads=num_threads)
optimizer.load_state_dict(checkpoint)
def save_sharded_optimizer(
@@ -239,7 +244,14 @@ class LowLevelZeroCheckpointIO(TorchDDPCheckpointIO):
ranks=[0],
)
def load_sharded_optimizer(self, optimizer: OptimizerWrapper, index_file_path: str, prefix: str):
def load_sharded_optimizer(
self,
optimizer: OptimizerWrapper,
index_file_path: str,
prefix: str,
low_cpu_mem_mode: bool = True,
num_threads: int = 1,
):
"""Load sharded optimizer with the given path to index file.
Args:
@@ -283,14 +295,28 @@ class LowLevelZeroCheckpointIO(TorchDDPCheckpointIO):
if padding_size > 0:
v = torch.nn.functional.pad(v, [0, padding_size])
v_list = v.split(v.numel() // self.coordinator.world_size)
state_dict[param_idx][k] = v_list[self.coordinator.rank].detach().clone()
state_dict[param_idx][k] = v_list[self.coordinator.rank].detach()
if low_cpu_mem_mode:
state_dict[param_idx][k] = state_dict[param_idx][k].clone()
if not low_cpu_mem_mode:
state_dict = create_pinned_state_dict(state_dict, empty=False, num_threads=num_threads)
load_states_into_optimizer(optimizer, state_dict, id_map)
sharded_optimizer_loading_epilogue(optimizer)
def load_unsharded_model(self, model: ModelWrapper, checkpoint: str, strict: bool = True):
def load_unsharded_model(
self,
model: ModelWrapper,
checkpoint: str,
strict: bool = True,
low_cpu_mem_mode: bool = True,
num_threads: int = 1,
):
assert isinstance(model, LowLevelZeroModel), "Please boost the model before loading!"
model._force_wait_all_gather()
super().load_unsharded_model(model, checkpoint, strict)
super().load_unsharded_model(
model, checkpoint, strict, low_cpu_mem_mode=low_cpu_mem_mode, num_threads=num_threads
)
model.update_master_params()
def load_sharded_model(
@@ -300,10 +326,20 @@ class LowLevelZeroCheckpointIO(TorchDDPCheckpointIO):
strict: bool = False,
use_safetensors: bool = False,
load_sub_module: bool = True,
low_cpu_mem_mode: bool = True,
num_threads: int = 1,
):
assert isinstance(model, LowLevelZeroModel), "Please boost the model before loading!"
model._force_wait_all_gather()
super().load_sharded_model(model, checkpoint_index_file, strict, use_safetensors, load_sub_module)
super().load_sharded_model(
model,
checkpoint_index_file,
strict,
use_safetensors,
load_sub_module,
low_cpu_mem_mode=low_cpu_mem_mode,
num_threads=num_threads,
)
model.update_master_params()
def save_unsharded_model(