[autoparallel] add bias addtion function class (#2098)

* [autoparallel] add bias addtion function class

* polish code

* polish
This commit is contained in:
YuliangLiu0306
2022-12-08 11:31:51 +08:00
committed by GitHub
parent 3af7e65dea
commit b175e6d58e
5 changed files with 216 additions and 33 deletions

View File

@@ -0,0 +1,2 @@
from .addmm import Addmm
from .bias_addition_function import BiasAdditionFunc, LinearBasedBiasFunc, func_to_func_dict

View File

@@ -0,0 +1,76 @@
import operator
import torch
import torch.nn.functional as F
from ...registry import bias_addition_function
from .bias_addition_function import LinearBasedBiasFunc
@bias_addition_function.register(torch.addmm)
class Addmm(LinearBasedBiasFunc):
def extract_kwargs_from_origin_func(self):
kwargs = {}
if 'beta' in self.kwargs:
kwargs['beta'] = self.kwargs['beta']
if 'alpha' in self.kwargs:
kwargs['alpha'] = self.kwargs['alpha']
return kwargs
def coefficent_for_addmm(self, input_proxy, coefficent):
"""
This method is used to create a coefficent node for the numerical correctness.
The formula for torch.addmm is out = beta * input + alpha * (m1 @ m2)
Therefore, we need to use this method insert two more operator.mul nodes for
the computation graph to compute the final result.
"""
node_kind = 'call_function'
node_target = operator.mul
node_args = (
input_proxy,
coefficent,
)
node_kwargs = {}
mul_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs)
return mul_proxy
def transpose_other_operand_for_linear(self, other_proxy):
'''
This method is used to transpose the other operand for linear function.
For example:
input = torch.rand(3, 4)
m1 = torch.rand(3, 5)
m2 = torch.rand(5, 4)
original_output = torch.addmm(input, m1, m2)
# To keep the computation graph consistent with the origin computation graph, we need to transpose the m2
# before we call the linear function.
new_output = torch.linear(m1, m2.transpose(0, 1)) + input
'''
node_kind = 'call_function'
node_target = torch.transpose
node_args = (other_proxy, 0, 1)
node_kwargs = {}
transpose_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs)
return transpose_proxy
def generate(self):
transpose_proxy = self.transpose_other_operand_for_linear(self.args[2])
non_bias_linear_func_proxy = self.create_non_bias_func_proxy(self.args[1], transpose_proxy)
kwargs = self.extract_kwargs_from_origin_func()
if 'beta' in kwargs:
beta = kwargs['beta']
beta_proxy = self.coefficent_for_addmm(self.args[0], beta)
else:
beta_proxy = self.args[0]
if 'alpha' in kwargs:
alpha = kwargs['alpha']
alpha_proxy = self.coefficent_for_addmm(alpha, non_bias_linear_func_proxy)
else:
alpha_proxy = non_bias_linear_func_proxy
bias_addition_proxy = self.create_bias_addition_proxy(alpha_proxy, beta_proxy)
return bias_addition_proxy

View File

@@ -0,0 +1,91 @@
import operator
from abc import ABC, abstractmethod
import torch
import torch.nn.functional as F
class BiasAdditionFunc(ABC):
"""
This class is used to construct the restructure computation graph for
call_func node with bias addition inside.
"""
def __init__(self, tracer, target, args, kwargs, substitute_func):
self.tracer = tracer
self.target = target
self.args = args
self.kwargs = kwargs
self.substitute_func = substitute_func
@abstractmethod
def extract_kwargs_from_origin_func(self):
"""
This method is used to extract the kwargs for further graph transform.
For example:
The formula for torch.addmm is out = beta * input + alpha * (m1 @ m2)
The kwargs for addmm function is {beta=1, alpha=1, output=None}, then we need
to insert two more operator.mul nodes for the computation graph to compute the
final result.
"""
pass
@abstractmethod
def generate(self):
"""
This method is used to construct the whole restructure computation graph for call_func node with bias
addition inside.
A whole restructure computation graph will contain a weight node, a bias node, a non-bias addition computation node,
a bias reshape node if needed and a bias addition node.
Use torch.addmm as an example:
The origin node is:
%addmm: call_func[target=torch.addmm](args = (%input_1, m1, m2), kwargs = {beta=1, alpha=1})
Restructured graph is:
%transpose : [#users=1] = call_function[target=torch.transpose](args = (%m2, 0, 1), kwargs = {})
%linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%m1, %transpose), kwargs = {})
%mul : [#users=1] = call_function[target=operator.mul](args = (%input_1, 3), kwargs = {})
%mul_1 : [#users=1] = call_function[target=operator.mul](args = (2, %linear), kwargs = {})
%add : [#users=1] = call_function[target=operator.add](args = (%mul_1, %mul), kwargs = {})
"""
pass
class LinearBasedBiasFunc(BiasAdditionFunc):
"""
This class is used to construct the restructure computation graph for
call_func node based on F.linear.
"""
def create_non_bias_func_proxy(self, input_proxy, other_proxy):
"""
This method is used to create the non_bias_func proxy, the node created by this proxy will
compute the main computation, such as convolution, with bias option banned.
"""
assert self.substitute_func == torch.nn.functional.linear
node_kind = 'call_function'
node_target = self.substitute_func
node_args = (input_proxy, other_proxy)
# non-bias linear does not have any kwargs
node_kwargs = {}
non_bias_func_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs)
return non_bias_func_proxy
def create_bias_addition_proxy(self, non_bias_func_proxy, bias_proxy):
"""
This method is used to create the bias_addition_proxy, the node created by this proxy will
compute the sum of non_bias_func result and bias with some reshape operation if needed.
"""
bias_add_node_kind = 'call_function'
bias_add_node_target = operator.add
bias_add_args = (non_bias_func_proxy, bias_proxy)
bias_add_proxy = self.tracer.create_proxy(bias_add_node_kind, bias_add_node_target, tuple(bias_add_args), {})
return bias_add_proxy
func_to_func_dict = {
torch.addmm: F.linear,
}

View File

@@ -20,7 +20,7 @@ from torch.fx.proxy import ParameterProxy, Proxy
from ..proxy import ColoProxy
from ._tracer_utils import compute_meta_data_for_functions_proxy, extract_meta, is_element_in_list
from .bias_addition_patch import module_to_func_dict
from .bias_addition_patch import func_to_func_dict, module_to_func_dict
from .registry import bias_addition_function, bias_addition_module, meta_patched_function, meta_patched_module
__all__ = ['ColoTracer']
@@ -96,7 +96,8 @@ class ColoTracer(Tracer):
handle = None
if kind == "call_function":
if bias_addition_function.has(target):
handle = bias_addition_function.get(target)(self, target, args, kwargs)
function_to_substitute = func_to_func_dict[target]
handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute)
elif bias_addition_function.has(target.__name__):
# use name for some builtin op like @ (matmul)
handle = bias_addition_function.get(target.__name__)(self, target, args, kwargs)