mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 01:28:31 +00:00
[autoparallel] add bias addtion function class (#2098)
* [autoparallel] add bias addtion function class * polish code * polish
This commit is contained in:
@@ -0,0 +1,2 @@
|
||||
from .addmm import Addmm
|
||||
from .bias_addition_function import BiasAdditionFunc, LinearBasedBiasFunc, func_to_func_dict
|
||||
|
@@ -0,0 +1,76 @@
|
||||
import operator
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ...registry import bias_addition_function
|
||||
from .bias_addition_function import LinearBasedBiasFunc
|
||||
|
||||
|
||||
@bias_addition_function.register(torch.addmm)
|
||||
class Addmm(LinearBasedBiasFunc):
|
||||
|
||||
def extract_kwargs_from_origin_func(self):
|
||||
kwargs = {}
|
||||
if 'beta' in self.kwargs:
|
||||
kwargs['beta'] = self.kwargs['beta']
|
||||
if 'alpha' in self.kwargs:
|
||||
kwargs['alpha'] = self.kwargs['alpha']
|
||||
return kwargs
|
||||
|
||||
def coefficent_for_addmm(self, input_proxy, coefficent):
|
||||
"""
|
||||
This method is used to create a coefficent node for the numerical correctness.
|
||||
The formula for torch.addmm is out = beta * input + alpha * (m1 @ m2)
|
||||
Therefore, we need to use this method insert two more operator.mul nodes for
|
||||
the computation graph to compute the final result.
|
||||
"""
|
||||
node_kind = 'call_function'
|
||||
node_target = operator.mul
|
||||
node_args = (
|
||||
input_proxy,
|
||||
coefficent,
|
||||
)
|
||||
node_kwargs = {}
|
||||
mul_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs)
|
||||
return mul_proxy
|
||||
|
||||
def transpose_other_operand_for_linear(self, other_proxy):
|
||||
'''
|
||||
This method is used to transpose the other operand for linear function.
|
||||
For example:
|
||||
input = torch.rand(3, 4)
|
||||
m1 = torch.rand(3, 5)
|
||||
m2 = torch.rand(5, 4)
|
||||
original_output = torch.addmm(input, m1, m2)
|
||||
# To keep the computation graph consistent with the origin computation graph, we need to transpose the m2
|
||||
# before we call the linear function.
|
||||
new_output = torch.linear(m1, m2.transpose(0, 1)) + input
|
||||
'''
|
||||
node_kind = 'call_function'
|
||||
node_target = torch.transpose
|
||||
node_args = (other_proxy, 0, 1)
|
||||
node_kwargs = {}
|
||||
transpose_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs)
|
||||
return transpose_proxy
|
||||
|
||||
def generate(self):
|
||||
transpose_proxy = self.transpose_other_operand_for_linear(self.args[2])
|
||||
non_bias_linear_func_proxy = self.create_non_bias_func_proxy(self.args[1], transpose_proxy)
|
||||
kwargs = self.extract_kwargs_from_origin_func()
|
||||
|
||||
if 'beta' in kwargs:
|
||||
beta = kwargs['beta']
|
||||
beta_proxy = self.coefficent_for_addmm(self.args[0], beta)
|
||||
else:
|
||||
beta_proxy = self.args[0]
|
||||
|
||||
if 'alpha' in kwargs:
|
||||
alpha = kwargs['alpha']
|
||||
alpha_proxy = self.coefficent_for_addmm(alpha, non_bias_linear_func_proxy)
|
||||
else:
|
||||
alpha_proxy = non_bias_linear_func_proxy
|
||||
|
||||
bias_addition_proxy = self.create_bias_addition_proxy(alpha_proxy, beta_proxy)
|
||||
|
||||
return bias_addition_proxy
|
@@ -0,0 +1,91 @@
|
||||
import operator
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class BiasAdditionFunc(ABC):
|
||||
"""
|
||||
This class is used to construct the restructure computation graph for
|
||||
call_func node with bias addition inside.
|
||||
"""
|
||||
|
||||
def __init__(self, tracer, target, args, kwargs, substitute_func):
|
||||
self.tracer = tracer
|
||||
self.target = target
|
||||
self.args = args
|
||||
self.kwargs = kwargs
|
||||
self.substitute_func = substitute_func
|
||||
|
||||
@abstractmethod
|
||||
def extract_kwargs_from_origin_func(self):
|
||||
"""
|
||||
This method is used to extract the kwargs for further graph transform.
|
||||
|
||||
For example:
|
||||
The formula for torch.addmm is out = beta * input + alpha * (m1 @ m2)
|
||||
The kwargs for addmm function is {beta=1, alpha=1, output=None}, then we need
|
||||
to insert two more operator.mul nodes for the computation graph to compute the
|
||||
final result.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def generate(self):
|
||||
"""
|
||||
This method is used to construct the whole restructure computation graph for call_func node with bias
|
||||
addition inside.
|
||||
|
||||
A whole restructure computation graph will contain a weight node, a bias node, a non-bias addition computation node,
|
||||
a bias reshape node if needed and a bias addition node.
|
||||
|
||||
Use torch.addmm as an example:
|
||||
The origin node is:
|
||||
%addmm: call_func[target=torch.addmm](args = (%input_1, m1, m2), kwargs = {beta=1, alpha=1})
|
||||
Restructured graph is:
|
||||
%transpose : [#users=1] = call_function[target=torch.transpose](args = (%m2, 0, 1), kwargs = {})
|
||||
%linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%m1, %transpose), kwargs = {})
|
||||
%mul : [#users=1] = call_function[target=operator.mul](args = (%input_1, 3), kwargs = {})
|
||||
%mul_1 : [#users=1] = call_function[target=operator.mul](args = (2, %linear), kwargs = {})
|
||||
%add : [#users=1] = call_function[target=operator.add](args = (%mul_1, %mul), kwargs = {})
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class LinearBasedBiasFunc(BiasAdditionFunc):
|
||||
"""
|
||||
This class is used to construct the restructure computation graph for
|
||||
call_func node based on F.linear.
|
||||
"""
|
||||
|
||||
def create_non_bias_func_proxy(self, input_proxy, other_proxy):
|
||||
"""
|
||||
This method is used to create the non_bias_func proxy, the node created by this proxy will
|
||||
compute the main computation, such as convolution, with bias option banned.
|
||||
"""
|
||||
assert self.substitute_func == torch.nn.functional.linear
|
||||
node_kind = 'call_function'
|
||||
node_target = self.substitute_func
|
||||
|
||||
node_args = (input_proxy, other_proxy)
|
||||
# non-bias linear does not have any kwargs
|
||||
node_kwargs = {}
|
||||
non_bias_func_proxy = self.tracer.create_proxy(node_kind, node_target, node_args, node_kwargs)
|
||||
return non_bias_func_proxy
|
||||
|
||||
def create_bias_addition_proxy(self, non_bias_func_proxy, bias_proxy):
|
||||
"""
|
||||
This method is used to create the bias_addition_proxy, the node created by this proxy will
|
||||
compute the sum of non_bias_func result and bias with some reshape operation if needed.
|
||||
"""
|
||||
bias_add_node_kind = 'call_function'
|
||||
bias_add_node_target = operator.add
|
||||
bias_add_args = (non_bias_func_proxy, bias_proxy)
|
||||
bias_add_proxy = self.tracer.create_proxy(bias_add_node_kind, bias_add_node_target, tuple(bias_add_args), {})
|
||||
return bias_add_proxy
|
||||
|
||||
|
||||
func_to_func_dict = {
|
||||
torch.addmm: F.linear,
|
||||
}
|
@@ -20,7 +20,7 @@ from torch.fx.proxy import ParameterProxy, Proxy
|
||||
|
||||
from ..proxy import ColoProxy
|
||||
from ._tracer_utils import compute_meta_data_for_functions_proxy, extract_meta, is_element_in_list
|
||||
from .bias_addition_patch import module_to_func_dict
|
||||
from .bias_addition_patch import func_to_func_dict, module_to_func_dict
|
||||
from .registry import bias_addition_function, bias_addition_module, meta_patched_function, meta_patched_module
|
||||
|
||||
__all__ = ['ColoTracer']
|
||||
@@ -96,7 +96,8 @@ class ColoTracer(Tracer):
|
||||
handle = None
|
||||
if kind == "call_function":
|
||||
if bias_addition_function.has(target):
|
||||
handle = bias_addition_function.get(target)(self, target, args, kwargs)
|
||||
function_to_substitute = func_to_func_dict[target]
|
||||
handle = bias_addition_function.get(target)(self, target, args, kwargs, function_to_substitute)
|
||||
elif bias_addition_function.has(target.__name__):
|
||||
# use name for some builtin op like @ (matmul)
|
||||
handle = bias_addition_function.get(target.__name__)(self, target, args, kwargs)
|
||||
|
Reference in New Issue
Block a user