mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 04:50:17 +00:00
[moe] deepseek moe sp support
This commit is contained in:
84
tests/kit/model_zoo/transformers/deepseek.py
Normal file
84
tests/kit/model_zoo/transformers/deepseek.py
Normal file
@@ -0,0 +1,84 @@
|
||||
# modified from tests/kit/model_zoo/transformers/mistral.py
|
||||
import torch
|
||||
import transformers
|
||||
from transformers import AutoConfig
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence Mixtral
|
||||
# ===============================
|
||||
|
||||
|
||||
def data_gen():
|
||||
# Generated from following code snippet
|
||||
#
|
||||
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
# tokenizer = AutoTokenizer.from_pretrained("mixtralai/Mixtral-7B-v0.1")
|
||||
# input = 'My favourite condiment is vinegar' (last two words repeated to satisfy length requirement)
|
||||
# tokenized_input = tokenizer([input], return_tensors="pt")
|
||||
# input_ids = tokenized_input['input_ids']
|
||||
# attention_mask = tokenized_input['attention_mask']
|
||||
input_ids = torch.tensor([[1, 22, 55, 77, 532, 349, 43, 22]], dtype=torch.int64)
|
||||
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
def data_gen_for_lm():
|
||||
# LM data gen
|
||||
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
|
||||
data = data_gen()
|
||||
data["labels"] = data["input_ids"].clone()
|
||||
return data
|
||||
|
||||
|
||||
def data_gen_for_sequence_classification():
|
||||
# sequence classification data gen
|
||||
data = data_gen()
|
||||
data["labels"] = torch.tensor([1], dtype=torch.int64)
|
||||
return data
|
||||
|
||||
|
||||
# define output transform function
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# define loss function
|
||||
loss_fn_for_mixtral_model = lambda x: x[0].mean()
|
||||
loss_fn = lambda x: x.loss
|
||||
loss_fn_for_seq_classification = lambda output: output.logits.mean()
|
||||
|
||||
|
||||
def init_deepseek():
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
"deepseek-ai/deepseek-moe-16b-base",
|
||||
hidden_size=32,
|
||||
intermediate_size=32,
|
||||
moe_intermediate_size=32,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=8,
|
||||
num_key_value_heads=8,
|
||||
# vocab_size=2200,
|
||||
first_k_dense_replace=1,
|
||||
attn_implementation="flash_attention_2",
|
||||
torch_dtype="float16",
|
||||
n_routed_experts=8,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
|
||||
if hasattr(config, "pad_token_id"):
|
||||
config.pad_token_id = config.eos_token_id
|
||||
print(config)
|
||||
model = transformers.AutoModel.from_config(config, trust_remote_code=True)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
model_zoo.register(
|
||||
name="transformers_deepseek",
|
||||
model_fn=init_deepseek,
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_mixtral_model,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
Reference in New Issue
Block a user