mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-17 07:00:37 +00:00
[autoparallel] adapt solver with mlp (#1638)
This commit is contained in:
93
tests/test_auto_parallel/test_solver_with_mlp.py
Normal file
93
tests/test_auto_parallel/test_solver_with_mlp.py
Normal file
@@ -0,0 +1,93 @@
|
||||
import torch
|
||||
from torch.fx import GraphModule
|
||||
import torch.nn as nn
|
||||
import pytest
|
||||
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
|
||||
from colossalai.auto_parallel.solver.cost_graph import CostGraph
|
||||
from copy import deepcopy
|
||||
from colossalai.auto_parallel.solver import Solver
|
||||
from torchvision.models import resnet34, resnet50
|
||||
from colossalai.auto_parallel.solver.constants import *
|
||||
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser
|
||||
from colossalai.auto_parallel.solver.options import SolverOptions
|
||||
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
|
||||
def __init__(self, dim: int):
|
||||
super().__init__()
|
||||
self.linear1 = torch.nn.Linear(dim, dim * 4)
|
||||
self.linear2 = torch.nn.Linear(dim * 4, dim)
|
||||
self.dropout = torch.nn.Dropout(0)
|
||||
self.relu = torch.nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear1(x)
|
||||
x = self.dropout(x)
|
||||
x = self.relu(x)
|
||||
x = self.linear2(x)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.skip("for higher testing speed")
|
||||
def test_cost_graph():
|
||||
physical_mesh_id = torch.arange(0, 8)
|
||||
mesh_shape = (2, 4)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
shape_consistency_manager = ShapeConsistencyManager()
|
||||
|
||||
tracer = ColoTracer()
|
||||
model = MLP(32)
|
||||
|
||||
input_sample = {'x': torch.rand(16, 32).to('meta')}
|
||||
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %linear1 : [#users=1] = call_module[target=linear1](args = (%x,), kwargs = {})
|
||||
# %dropout : [#users=1] = call_module[target=dropout](args = (%linear1,), kwargs = {})
|
||||
# %relu : [#users=1] = call_module[target=relu](args = (%dropout,), kwargs = {})
|
||||
# %linear2 : [#users=1] = call_module[target=linear2](args = (%relu,), kwargs = {})
|
||||
# return linear2
|
||||
graph = tracer.trace(root=model, meta_args=input_sample)
|
||||
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
gm.recompile()
|
||||
graph_analyser = GraphAnalyser(gm)
|
||||
liveness_list = graph_analyser.liveness_analysis()
|
||||
solver_options = SolverOptions(fast=True)
|
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
|
||||
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
|
||||
cost_graph.simplify_graph()
|
||||
# # megatron mode if no memory constraints
|
||||
# solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
|
||||
# all sharding on out feature dim if memory budget is not sufficient for megatron mode
|
||||
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, memory_budget=5500.0)
|
||||
|
||||
ret = solver.call_solver_serialized_args()
|
||||
strategies_list = list(ret[0])
|
||||
computation_cost = 0
|
||||
communication_cost = 0
|
||||
memory_cost = 0
|
||||
for index, node in enumerate(graph.nodes):
|
||||
print(node.name, node.strategies_vector[strategies_list[index]].name)
|
||||
computation_cost += node.strategies_vector[strategies_list[index]].compute_cost
|
||||
communication_cost += node.strategies_vector[strategies_list[index]].communication_cost
|
||||
node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost
|
||||
if isinstance(node_memory_cost, tuple):
|
||||
node_memory_cost = node_memory_cost[0]
|
||||
memory_cost += node_memory_cost
|
||||
|
||||
print(f'computation cost is {computation_cost}')
|
||||
print(f'communication cost is {communication_cost}')
|
||||
print(f'memory cost is {memory_cost}')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_cost_graph()
|
Reference in New Issue
Block a user