mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-23 18:39:56 +00:00
[chat] add distributed PPO trainer (#3740)
* Detached ppo (#9) * run the base * working on dist ppo * sync * detached trainer * update detached trainer. no maker update function * facing init problem * 1 maker 1 trainer detached run. but no model update * facing cuda problem * fix save functions * verified maker update * nothing * add ignore * analyize loss issue * remove some debug codes * facing 2m1t stuck issue * 2m1t verified * do not use torchrun * working on 2m2t * working on 2m2t * initialize strategy in ray actor env * facing actor's init order issue * facing ddp model update issue (need unwarp ddp) * unwrap ddp actor * checking 1m2t stuck problem * nothing * set timeout for trainer choosing. It solves the stuck problem! * delete some debug output * rename to sync with upstream * rename to sync with upstream * coati rename * nothing * I am going to detach the replaybuffer from trainer and make it a Ray Actor. Two benefits: 1. support TP trainer. 2. asynchronized buffer operations * experience_maker_holder performs target-revolving _send_experience() instead of length comparison. * move code to ray subfolder * working on pipeline inference * apply comments * working on pipeline strategy. in progress. * remove pipeline code. clean this branch * update remote parameters by state_dict. no test * nothing * state_dict sharding transfer * merge debug branch * gemini _unwrap_model fix * simplify code * simplify code & fix LoRALinear AttributeError * critic unwrapped state_dict --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] add perfomance evaluator and fix bugs (#10) * [chat] add performance evaluator for ray * [chat] refactor debug arg * [chat] support hf config * [chat] fix generation * [chat] add 1mmt dummy example * [chat] fix gemini ckpt * split experience to send (#11) Co-authored-by: csric <richcsr256@gmail.com> * [chat] refactor trainer and maker (#12) * [chat] refactor experience maker holder * [chat] refactor model init * [chat] refactor trainer args * [chat] refactor model init * [chat] refactor trainer * [chat] refactor experience sending logic and training loop args (#13) * [chat] refactor experience send logic * [chat] refactor trainer * [chat] refactor trainer * [chat] refactor experience maker * [chat] refactor pbar * [chat] refactor example folder (#14) * [chat] support quant (#15) * [chat] add quant * [chat] add quant example * prompt example (#16) * prompt example * prompt load csv data * remove legacy try --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] add mmmt dummy example and refactor experience sending (#17) * [chat] add mmmt dummy example * [chat] refactor naive strategy * [chat] fix struck problem * [chat] fix naive strategy * [chat] optimize experience maker sending logic * [chat] refactor sending assignment * [chat] refactor performance evaluator (#18) * Prompt Example & requires_grad state_dict & sharding state_dict (#19) * prompt example * prompt load csv data * remove legacy try * maker models require_grad set to False * working on zero redundancy update * mmmt_prompt example; naive strategy requires_grad state_dict & sharding; maker model requires_no_grad. * remove legacy examples * remove legacy examples * remove replay buffer tp state. bad design --------- Co-authored-by: csric <richcsr256@gmail.com> * state_dict sending adapts to new unwrap function (#20) * prompt example * prompt load csv data * remove legacy try * maker models require_grad set to False * working on zero redundancy update * mmmt_prompt example; naive strategy requires_grad state_dict & sharding; maker model requires_no_grad. * remove legacy examples * remove legacy examples * remove replay buffer tp state. bad design * opt benchmark * better script * nothing * [chat] strategy refactor unwrap model * [chat] strategy refactor save model * [chat] add docstr * [chat] refactor trainer save model * [chat] fix strategy typing * [chat] refactor trainer save model * [chat] update readme * [chat] fix unit test * working on lora reconstruction * state_dict sending adapts to new unwrap function * remove comments --------- Co-authored-by: csric <richcsr256@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * [chat-ray] add readme (#21) * add readme * transparent graph * add note background --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] get images from url (#22) * Refactor/chat ray (#23) * [chat] lora add todo * [chat] remove unused pipeline strategy * [chat] refactor example structure * [chat] setup ci for ray * [chat-ray] Support LoRA trainer. LoRA weights reconstruction. (#24) * lora support prototype * lora support * 1mmt lora & remove useless code --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] fix test ci for ray * [chat] fix test ci requirements for ray * [chat] fix ray runtime env * [chat] fix ray runtime env * [chat] fix example ci docker args * [chat] add debug info in trainer * [chat] add nccl debug info * [chat] skip ray test * [doc] fix typo --------- Co-authored-by: csric <59389055+CsRic@users.noreply.github.com> Co-authored-by: csric <richcsr256@gmail.com>
This commit is contained in:
7
applications/Chat/coati/quant/__init__.py
Normal file
7
applications/Chat/coati/quant/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
from .llama_gptq import load_quant as llama_load_quant
|
||||
from .utils import low_resource_init
|
||||
|
||||
__all__ = [
|
||||
'llama_load_quant',
|
||||
'low_resource_init',
|
||||
]
|
5
applications/Chat/coati/quant/llama_gptq/__init__.py
Normal file
5
applications/Chat/coati/quant/llama_gptq/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
from .loader import load_quant
|
||||
|
||||
__all__ = [
|
||||
'load_quant',
|
||||
]
|
26
applications/Chat/coati/quant/llama_gptq/loader.py
Normal file
26
applications/Chat/coati/quant/llama_gptq/loader.py
Normal file
@@ -0,0 +1,26 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .model_utils import find_layers
|
||||
from .quant import make_quant
|
||||
|
||||
|
||||
def load_quant(model: nn.Module, checkpoint: str, wbits: int, groupsize: int):
|
||||
model = model.eval()
|
||||
layers = find_layers(model)
|
||||
|
||||
# ignore lm head
|
||||
layers = find_layers(model)
|
||||
for name in ['lm_head']:
|
||||
if name in layers:
|
||||
del layers[name]
|
||||
|
||||
make_quant(model, layers, wbits, groupsize)
|
||||
|
||||
if checkpoint.endswith('.safetensors'):
|
||||
from safetensors.torch import load_file as safe_load
|
||||
model.load_state_dict(safe_load(checkpoint))
|
||||
else:
|
||||
model.load_state_dict(torch.load(checkpoint))
|
||||
|
||||
return model
|
13
applications/Chat/coati/quant/llama_gptq/model_utils.py
Normal file
13
applications/Chat/coati/quant/llama_gptq/model_utils.py
Normal file
@@ -0,0 +1,13 @@
|
||||
# copied from https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/past/modelutils.py
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
|
||||
if type(module) in layers:
|
||||
return {name: module}
|
||||
res = {}
|
||||
for name1, child in module.named_children():
|
||||
res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
|
||||
return res
|
283
applications/Chat/coati/quant/llama_gptq/quant.py
Normal file
283
applications/Chat/coati/quant/llama_gptq/quant.py
Normal file
@@ -0,0 +1,283 @@
|
||||
# copied from https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/past/quant.py
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def quantize(x, scale, zero, maxq):
|
||||
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
|
||||
return scale * (q - zero)
|
||||
|
||||
|
||||
class Quantizer(nn.Module):
|
||||
|
||||
def __init__(self, shape=1):
|
||||
super(Quantizer, self).__init__()
|
||||
self.register_buffer('maxq', torch.tensor(0))
|
||||
self.register_buffer('scale', torch.zeros(shape))
|
||||
self.register_buffer('zero', torch.zeros(shape))
|
||||
|
||||
def configure(self, bits, perchannel=False, sym=True, mse=False, norm=2.4, grid=100, maxshrink=.8):
|
||||
self.maxq = torch.tensor(2**bits - 1)
|
||||
self.perchannel = perchannel
|
||||
self.sym = sym
|
||||
self.mse = mse
|
||||
self.norm = norm
|
||||
self.grid = grid
|
||||
self.maxshrink = maxshrink
|
||||
|
||||
def find_params(self, x, weight=False):
|
||||
dev = x.device
|
||||
self.maxq = self.maxq.to(dev)
|
||||
|
||||
shape = x.shape
|
||||
if self.perchannel:
|
||||
if weight:
|
||||
x = x.flatten(1)
|
||||
else:
|
||||
if len(shape) == 4:
|
||||
x = x.permute([1, 0, 2, 3])
|
||||
x = x.flatten(1)
|
||||
if len(shape) == 3:
|
||||
x = x.reshape((-1, shape[-1])).t()
|
||||
if len(shape) == 2:
|
||||
x = x.t()
|
||||
else:
|
||||
x = x.flatten().unsqueeze(0)
|
||||
|
||||
tmp = torch.zeros(x.shape[0], device=dev)
|
||||
xmin = torch.minimum(x.min(1)[0], tmp)
|
||||
xmax = torch.maximum(x.max(1)[0], tmp)
|
||||
|
||||
if self.sym:
|
||||
xmax = torch.maximum(torch.abs(xmin), xmax)
|
||||
tmp = xmin < 0
|
||||
if torch.any(tmp):
|
||||
xmin[tmp] = -xmax[tmp]
|
||||
tmp = (xmin == 0) & (xmax == 0)
|
||||
xmin[tmp] = -1
|
||||
xmax[tmp] = +1
|
||||
|
||||
self.scale = (xmax - xmin) / self.maxq
|
||||
if self.sym:
|
||||
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
|
||||
else:
|
||||
self.zero = torch.round(-xmin / self.scale)
|
||||
|
||||
if self.mse:
|
||||
best = torch.full([x.shape[0]], float('inf'), device=dev)
|
||||
for i in range(int(self.maxshrink * self.grid)):
|
||||
p = 1 - i / self.grid
|
||||
xmin1 = p * xmin
|
||||
xmax1 = p * xmax
|
||||
scale1 = (xmax1 - xmin1) / self.maxq
|
||||
zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero
|
||||
q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq)
|
||||
q -= x
|
||||
q.abs_()
|
||||
q.pow_(self.norm)
|
||||
err = torch.sum(q, 1)
|
||||
tmp = err < best
|
||||
if torch.any(tmp):
|
||||
best[tmp] = err[tmp]
|
||||
self.scale[tmp] = scale1[tmp]
|
||||
self.zero[tmp] = zero1[tmp]
|
||||
if not self.perchannel:
|
||||
if weight:
|
||||
tmp = shape[0]
|
||||
else:
|
||||
tmp = shape[1] if len(shape) != 3 else shape[2]
|
||||
self.scale = self.scale.repeat(tmp)
|
||||
self.zero = self.zero.repeat(tmp)
|
||||
|
||||
if weight:
|
||||
shape = [-1] + [1] * (len(shape) - 1)
|
||||
self.scale = self.scale.reshape(shape)
|
||||
self.zero = self.zero.reshape(shape)
|
||||
return
|
||||
if len(shape) == 4:
|
||||
self.scale = self.scale.reshape((1, -1, 1, 1))
|
||||
self.zero = self.zero.reshape((1, -1, 1, 1))
|
||||
if len(shape) == 3:
|
||||
self.scale = self.scale.reshape((1, 1, -1))
|
||||
self.zero = self.zero.reshape((1, 1, -1))
|
||||
if len(shape) == 2:
|
||||
self.scale = self.scale.unsqueeze(0)
|
||||
self.zero = self.zero.unsqueeze(0)
|
||||
|
||||
def quantize(self, x):
|
||||
if self.ready():
|
||||
return quantize(x, self.scale, self.zero, self.maxq)
|
||||
return x
|
||||
|
||||
def enabled(self):
|
||||
return self.maxq > 0
|
||||
|
||||
def ready(self):
|
||||
return torch.all(self.scale != 0)
|
||||
|
||||
|
||||
try:
|
||||
import quant_cuda
|
||||
except:
|
||||
print('CUDA extension not installed.')
|
||||
|
||||
# Assumes layer is perfectly divisible into 256 * 256 blocks
|
||||
|
||||
|
||||
class QuantLinear(nn.Module):
|
||||
|
||||
def __init__(self, bits, groupsize, infeatures, outfeatures):
|
||||
super().__init__()
|
||||
if bits not in [2, 3, 4, 8]:
|
||||
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
||||
self.infeatures = infeatures
|
||||
self.outfeatures = outfeatures
|
||||
self.bits = bits
|
||||
if groupsize != -1 and groupsize < 32 and groupsize != int(math.pow(2, int(math.log2(groupsize)))):
|
||||
raise NotImplementedError("groupsize supports powers of 2 greater than 32. (e.g. : 32,64,128,etc)")
|
||||
groupsize = groupsize if groupsize != -1 else infeatures
|
||||
self.groupsize = groupsize
|
||||
self.register_buffer(
|
||||
'qzeros', torch.zeros((math.ceil(infeatures / groupsize), outfeatures // 256 * (bits * 8)),
|
||||
dtype=torch.int))
|
||||
self.register_buffer('scales', torch.zeros((math.ceil(infeatures / groupsize), outfeatures)))
|
||||
self.register_buffer('bias', torch.zeros(outfeatures))
|
||||
self.register_buffer('qweight', torch.zeros((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int))
|
||||
self._initialized_quant_state = False
|
||||
|
||||
def pack(self, linear, scales, zeros):
|
||||
scales = scales.t().contiguous()
|
||||
zeros = zeros.t().contiguous()
|
||||
scale_zeros = zeros * scales
|
||||
self.scales = scales.clone()
|
||||
if linear.bias is not None:
|
||||
self.bias = linear.bias.clone()
|
||||
|
||||
intweight = []
|
||||
for idx in range(self.infeatures):
|
||||
g_idx = idx // self.groupsize
|
||||
intweight.append(
|
||||
torch.round((linear.weight.data[:, idx] + scale_zeros[g_idx]) / self.scales[g_idx]).to(torch.int)[:,
|
||||
None])
|
||||
intweight = torch.cat(intweight, dim=1)
|
||||
intweight = intweight.t().contiguous()
|
||||
intweight = intweight.numpy().astype(np.uint32)
|
||||
qweight = np.zeros((intweight.shape[0] // 256 * (self.bits * 8), intweight.shape[1]), dtype=np.uint32)
|
||||
i = 0
|
||||
row = 0
|
||||
while row < qweight.shape[0]:
|
||||
if self.bits in [2, 4, 8]:
|
||||
for j in range(i, i + (32 // self.bits)):
|
||||
qweight[row] |= intweight[j] << (self.bits * (j - i))
|
||||
i += 32 // self.bits
|
||||
row += 1
|
||||
elif self.bits == 3:
|
||||
for j in range(i, i + 10):
|
||||
qweight[row] |= intweight[j] << (3 * (j - i))
|
||||
i += 10
|
||||
qweight[row] |= intweight[i] << 30
|
||||
row += 1
|
||||
qweight[row] |= (intweight[i] >> 2) & 1
|
||||
i += 1
|
||||
for j in range(i, i + 10):
|
||||
qweight[row] |= intweight[j] << (3 * (j - i) + 1)
|
||||
i += 10
|
||||
qweight[row] |= intweight[i] << 31
|
||||
row += 1
|
||||
qweight[row] |= (intweight[i] >> 1) & 0x3
|
||||
i += 1
|
||||
for j in range(i, i + 10):
|
||||
qweight[row] |= intweight[j] << (3 * (j - i) + 2)
|
||||
i += 10
|
||||
row += 1
|
||||
else:
|
||||
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
||||
|
||||
qweight = qweight.astype(np.int32)
|
||||
self.qweight = torch.from_numpy(qweight)
|
||||
|
||||
zeros -= 1
|
||||
zeros = zeros.numpy().astype(np.uint32)
|
||||
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 256 * (self.bits * 8)), dtype=np.uint32)
|
||||
i = 0
|
||||
col = 0
|
||||
while col < qzeros.shape[1]:
|
||||
if self.bits in [2, 4, 8]:
|
||||
for j in range(i, i + (32 // self.bits)):
|
||||
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
|
||||
i += 32 // self.bits
|
||||
col += 1
|
||||
elif self.bits == 3:
|
||||
for j in range(i, i + 10):
|
||||
qzeros[:, col] |= zeros[:, j] << (3 * (j - i))
|
||||
i += 10
|
||||
qzeros[:, col] |= zeros[:, i] << 30
|
||||
col += 1
|
||||
qzeros[:, col] |= (zeros[:, i] >> 2) & 1
|
||||
i += 1
|
||||
for j in range(i, i + 10):
|
||||
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1)
|
||||
i += 10
|
||||
qzeros[:, col] |= zeros[:, i] << 31
|
||||
col += 1
|
||||
qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3
|
||||
i += 1
|
||||
for j in range(i, i + 10):
|
||||
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2)
|
||||
i += 10
|
||||
col += 1
|
||||
else:
|
||||
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
||||
|
||||
qzeros = qzeros.astype(np.int32)
|
||||
self.qzeros = torch.from_numpy(qzeros)
|
||||
|
||||
def forward(self, x):
|
||||
intermediate_dtype = torch.float32
|
||||
|
||||
if not self._initialized_quant_state:
|
||||
# Do we even have a bias? Check for at least one non-zero element.
|
||||
if self.bias is not None and bool(torch.any(self.bias != 0)):
|
||||
# Then make sure it's the right type.
|
||||
self.bias.data = self.bias.data.to(intermediate_dtype)
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
outshape = list(x.shape)
|
||||
outshape[-1] = self.outfeatures
|
||||
x = x.reshape(-1, x.shape[-1])
|
||||
if self.bias is None:
|
||||
y = torch.zeros(x.shape[0], outshape[-1], dtype=intermediate_dtype, device=x.device)
|
||||
else:
|
||||
y = self.bias.clone().repeat(x.shape[0], 1)
|
||||
|
||||
output_dtype = x.dtype
|
||||
x = x.to(intermediate_dtype)
|
||||
if self.bits == 2:
|
||||
quant_cuda.vecquant2matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
|
||||
elif self.bits == 3:
|
||||
quant_cuda.vecquant3matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
|
||||
elif self.bits == 4:
|
||||
quant_cuda.vecquant4matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
|
||||
elif self.bits == 8:
|
||||
quant_cuda.vecquant8matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
|
||||
else:
|
||||
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
||||
y = y.to(output_dtype)
|
||||
return y.reshape(outshape)
|
||||
|
||||
|
||||
def make_quant(module, names, bits, groupsize, name=''):
|
||||
if isinstance(module, QuantLinear):
|
||||
return
|
||||
for attr in dir(module):
|
||||
tmp = getattr(module, attr)
|
||||
name1 = name + '.' + attr if name != '' else attr
|
||||
if name1 in names:
|
||||
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features))
|
||||
for name1, child in module.named_children():
|
||||
make_quant(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)
|
28
applications/Chat/coati/quant/utils.py
Normal file
28
applications/Chat/coati/quant/utils.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from contextlib import contextmanager
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def _noop(*args, **kwargs):
|
||||
pass
|
||||
|
||||
|
||||
@contextmanager
|
||||
def low_resource_init():
|
||||
"""This context manager disables weight initialization and sets the default float dtype to half.
|
||||
"""
|
||||
old_kaiming_uniform_ = torch.nn.init.kaiming_uniform_
|
||||
old_uniform_ = torch.nn.init.uniform_
|
||||
old_normal_ = torch.nn.init.normal_
|
||||
dtype = torch.get_default_dtype()
|
||||
try:
|
||||
torch.nn.init.kaiming_uniform_ = _noop
|
||||
torch.nn.init.uniform_ = _noop
|
||||
torch.nn.init.normal_ = _noop
|
||||
torch.set_default_dtype(torch.half)
|
||||
yield
|
||||
finally:
|
||||
torch.nn.init.kaiming_uniform_ = old_kaiming_uniform_
|
||||
torch.nn.init.uniform_ = old_uniform_
|
||||
torch.nn.init.normal_ = old_normal_
|
||||
torch.set_default_dtype(dtype)
|
Reference in New Issue
Block a user