mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-15 22:19:38 +00:00
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692) * [legacy] remove cli of benchmark and update optim (#4690) * [legacy] remove cli of benchmark and update optim * [doc] fix cli doc test * [legacy] fix engine clip grad norm * [legacy] remove outdated colo tensor (#4694) * [legacy] remove outdated colo tensor * [test] fix test import * [legacy] move outdated zero to legacy (#4696) * [legacy] clean up utils (#4700) * [legacy] clean up utils * [example] update examples * [legacy] clean up amp * [legacy] fix amp module * [legacy] clean up gpc (#4742) * [legacy] clean up context * [legacy] clean core, constants and global vars * [legacy] refactor initialize * [example] fix examples ci * [example] fix examples ci * [legacy] fix tests * [example] fix gpt example * [example] fix examples ci * [devops] fix ci installation * [example] fix examples ci
This commit is contained in:
@@ -1,6 +1,8 @@
|
||||
from .config import Config, ConfigException
|
||||
from .parallel_context import ParallelContext
|
||||
from .parallel_mode import ParallelMode
|
||||
from .moe_context import MOE_CONTEXT
|
||||
from .process_group_initializer import *
|
||||
from .random import *
|
||||
|
||||
# from .moe_context import MOE_CONTEXT
|
||||
|
||||
__all__ = [
|
||||
'Config',
|
||||
'ConfigException',
|
||||
]
|
||||
|
@@ -3,13 +3,12 @@ from typing import Tuple
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.context.singleton_meta import SingletonMeta
|
||||
from colossalai.tensor import ProcessGroup
|
||||
from colossalai.legacy.tensor import ProcessGroup
|
||||
|
||||
|
||||
def _check_sanity():
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.legacy.core import global_context as gpc
|
||||
if gpc.tensor_parallel_size > 1 or gpc.pipeline_parallel_size > 1:
|
||||
raise NotImplementedError("Moe is not compatible with tensor or "
|
||||
"pipeline parallel at present.")
|
||||
@@ -61,7 +60,7 @@ class MoeContext(metaclass=SingletonMeta):
|
||||
|
||||
self.world_size = dist.get_world_size()
|
||||
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.legacy.core import global_context as gpc
|
||||
self.max_ep_size = gpc.config.get('max_ep_size', self.world_size)
|
||||
assert self.world_size % self.max_ep_size == 0, \
|
||||
"Maximum expert parallel size must be a factor of the number of GPUs"
|
||||
|
@@ -1,578 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import random
|
||||
import socket
|
||||
from collections import Counter
|
||||
from threading import local
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.constants import ALLOWED_MODES, INITIALIZER_MAPPING
|
||||
from colossalai.context.config import Config
|
||||
from colossalai.context.singleton_meta import SingletonMeta
|
||||
from colossalai.global_variables import tensor_parallel_env as env
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
||||
from .parallel_mode import ParallelMode
|
||||
from .random import add_seed, get_seeds, set_mode
|
||||
|
||||
|
||||
class ParallelContext(metaclass=SingletonMeta):
|
||||
"""This class provides interface functions for users to get the parallel context,
|
||||
such as the global rank, the local rank, the world size, etc. of each device.
|
||||
|
||||
Note:
|
||||
The parallel_mode used in this class should be concluded in ``ParallelMode``.
|
||||
More details about ``ParallelMode`` could be found in
|
||||
`parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
# distributed settings
|
||||
self._global_ranks = dict()
|
||||
self._local_ranks = dict()
|
||||
self._world_sizes = dict()
|
||||
self._groups = dict()
|
||||
self._cpu_groups = dict()
|
||||
self._ranks_in_group = dict()
|
||||
|
||||
# load config from file
|
||||
self._config = None
|
||||
|
||||
# default 3D parallel args, will be overwritten during process group initialization
|
||||
self.world_size = 1
|
||||
self.data_parallel_size = 1
|
||||
self.pipeline_parallel_size = 1
|
||||
self.tensor_parallel_size = 1
|
||||
self.num_processes_on_current_node = -1
|
||||
self.virtual_pipeline_parallel_size = None
|
||||
self.virtual_pipeline_parallel_rank = None
|
||||
|
||||
# logging
|
||||
self._verbose = False
|
||||
self._logger = get_dist_logger()
|
||||
|
||||
@property
|
||||
def config(self):
|
||||
return self._config
|
||||
|
||||
@property
|
||||
def verbose(self):
|
||||
return self._verbose
|
||||
|
||||
@verbose.setter
|
||||
def verbose(self, verbose_: bool):
|
||||
self._verbose = verbose_
|
||||
|
||||
def load_config(self, config: Union[dict, str]):
|
||||
"""Loads the configuration from either a dict or a file.
|
||||
|
||||
Args:
|
||||
config (dict or str): Either a dict containing the configuration information or the filename
|
||||
of a file containing the configuration information.
|
||||
|
||||
Raises:
|
||||
TypeError: Raises a TypeError if `config` is neither a dict nor a str.
|
||||
"""
|
||||
if isinstance(config, str):
|
||||
self._config = Config.from_file(config)
|
||||
elif isinstance(config, dict):
|
||||
self._config = Config(config)
|
||||
else:
|
||||
raise TypeError("Invalid type for config, only dictionary or string is supported")
|
||||
|
||||
def detect_num_processes_on_current_node(self):
|
||||
hostname = socket.gethostname()
|
||||
hostname_list = [None for _ in range(self.get_world_size(ParallelMode.GLOBAL))]
|
||||
dist.all_gather_object(hostname_list, hostname, group=self.get_group(ParallelMode.GLOBAL))
|
||||
counter = Counter(hostname_list)
|
||||
self.num_processes_on_current_node = counter[hostname]
|
||||
|
||||
@staticmethod
|
||||
def _check_parallel_mode(parallel_mode: ParallelMode):
|
||||
assert isinstance(parallel_mode, ParallelMode), \
|
||||
f'expected the argument parallel_mode to be of enum ParallelMode, but got {type(parallel_mode)}'
|
||||
|
||||
def get_global_rank(self):
|
||||
"""Returns the global rank of the current device.
|
||||
|
||||
Returns:
|
||||
int: The global rank of the current device
|
||||
"""
|
||||
return self._global_ranks[ParallelMode.GLOBAL]
|
||||
|
||||
def add_global_rank(self, parallel_mode: ParallelMode, rank: int):
|
||||
"""Adds the global rank of the current device for `parallel_mode` to the context.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode for the rank.
|
||||
rank (int): The rank to be added
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
self._global_ranks[parallel_mode] = rank
|
||||
|
||||
def get_local_rank(self, parallel_mode: ParallelMode):
|
||||
"""Returns the local rank of the current device.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
|
||||
Returns:
|
||||
int: The local rank of the current device for `parallel_mode`.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
return self._local_ranks[parallel_mode]
|
||||
|
||||
def _add_local_rank(self, parallel_mode: ParallelMode, rank: int):
|
||||
"""Adds the local rank of the current device for `parallel_mode` to the context.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode for the rank.
|
||||
rank (int): The rank to be added.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
self._local_ranks[parallel_mode] = rank
|
||||
|
||||
def get_next_global_rank(self, parallel_mode: ParallelMode):
|
||||
"""Returns the global rank of the next device.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
|
||||
Returns:
|
||||
int: The global rank of the next device for `parallel_mode`.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
|
||||
# get rank and world size
|
||||
local_rank = self.get_local_rank(parallel_mode)
|
||||
world_size = self.get_world_size(parallel_mode)
|
||||
ranks_in_group = self.get_ranks_in_group(parallel_mode)
|
||||
|
||||
return ranks_in_group[(local_rank + 1) % world_size]
|
||||
|
||||
def get_prev_global_rank(self, parallel_mode: ParallelMode):
|
||||
"""Returns the global rank of the previous device.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
|
||||
Returns:
|
||||
int: The global rank of the previous device for `parallel_mode`.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
|
||||
# get rank and world size
|
||||
local_rank = self.get_local_rank(parallel_mode)
|
||||
world_size = self.get_world_size(parallel_mode)
|
||||
ranks_in_group = self.get_ranks_in_group(parallel_mode)
|
||||
|
||||
return ranks_in_group[(local_rank - 1) % world_size]
|
||||
|
||||
def is_first_rank(self, parallel_mode: ParallelMode):
|
||||
"""Returns a boolean value indicating whether the current device is the first one
|
||||
among its group for `parallel_mode`.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
|
||||
Returns:
|
||||
bool: a boolean value indicating whether the current device is the first one
|
||||
among its group for `parallel_mode`.
|
||||
"""
|
||||
rank = self.get_local_rank(parallel_mode)
|
||||
return rank == 0
|
||||
|
||||
def is_last_rank(self, parallel_mode: ParallelMode):
|
||||
"""Returns a boolean value indicating whether the current device is the last one
|
||||
among its group for `parallel_mode`.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
|
||||
Returns:
|
||||
bool: a boolean value indicating whether the current device is the first one
|
||||
among its group for `parallel_mode`.
|
||||
"""
|
||||
rank = self.get_local_rank(parallel_mode)
|
||||
world_size = self.get_world_size(parallel_mode)
|
||||
return rank == world_size - 1
|
||||
|
||||
def is_pipeline_first_stage(self, ignore_virtual=False):
|
||||
if not ignore_virtual:
|
||||
if self.virtual_pipeline_parallel_size is not None and self.virtual_pipeline_parallel_rank != 0:
|
||||
return False
|
||||
return self.is_first_rank(ParallelMode.PIPELINE)
|
||||
|
||||
def is_pipeline_last_stage(self, ignore_virtual=False):
|
||||
if not ignore_virtual:
|
||||
if self.virtual_pipeline_parallel_size \
|
||||
is not None and self.virtual_pipeline_parallel_rank != self.virtual_pipeline_parallel_size - 1:
|
||||
return False
|
||||
return self.is_last_rank(ParallelMode.PIPELINE)
|
||||
|
||||
def get_world_size(self, parallel_mode: ParallelMode):
|
||||
"""Returns the world size for `parallel_mode`.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
|
||||
Returns:
|
||||
int: The world size for `parallel_mode`.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
return self._world_sizes[parallel_mode]
|
||||
|
||||
def _add_world_size(self, parallel_mode: ParallelMode, world_size: int):
|
||||
"""Adds world size for `parallel_mode`.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode corresponding to the process group
|
||||
world_size (int): The world size to be added
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
self._world_sizes[parallel_mode] = world_size
|
||||
|
||||
def get_group(self, parallel_mode: ParallelMode):
|
||||
"""Returns the group of the current device for `parallel_mode`.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
|
||||
Returns:
|
||||
torch.distributed.ProcessGroup: The group of the current device for `parallel_mode`.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
return self._groups[parallel_mode]
|
||||
|
||||
def _add_group(self, parallel_mode: ParallelMode, group: dist.ProcessGroup):
|
||||
"""Adds the group of the current device for `parallel_mode`.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
group (torch.distributed.ProcessGroup): The group to be added
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
self._groups[parallel_mode] = group
|
||||
|
||||
def get_cpu_group(self, parallel_mode: ParallelMode):
|
||||
"""Returns the Gloo group of the current device for `parallel_mode`.
|
||||
|
||||
:param parallel_mode: The chosen parallel mode
|
||||
:type parallel_mode: :class:`colossalai.context.ParallelMode`
|
||||
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`
|
||||
:return: The group of the current device for `parallel_mode`
|
||||
:rtype: torch.distributed.ProcessGroup
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
return self._cpu_groups[parallel_mode]
|
||||
|
||||
def _add_cpu_group(self, parallel_mode: ParallelMode, group: dist.ProcessGroup):
|
||||
"""Adds the Gloo group of the current device for `parallel_mode`.
|
||||
|
||||
:param parallel_mode: The chosen parallel mode
|
||||
:type parallel_mode: :class:`colossalai.context.ParallelMode`
|
||||
:param group: The group to be added
|
||||
:type group: torch.distributed.ProcessGroup
|
||||
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
self._cpu_groups[parallel_mode] = group
|
||||
|
||||
def get_ranks_in_group(self, parallel_mode: ParallelMode):
|
||||
"""Returns the rank of the current device for `parallel_mode` in the group.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
|
||||
Returns:
|
||||
int: The rank of the current device for `parallel_mode` in the group.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
return self._ranks_in_group[parallel_mode]
|
||||
|
||||
def _add_ranks_in_group(self, parallel_mode: ParallelMode, ranks: list):
|
||||
"""Adds the ranks of the current device for `parallel_mode` in the group.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
ranks (list): List of ranks to be added
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
|
||||
of :class:`colossalai.context.ParallelMode`.
|
||||
"""
|
||||
self._check_parallel_mode(parallel_mode)
|
||||
self._ranks_in_group[parallel_mode] = ranks
|
||||
|
||||
def init_global_dist(self, rank: int, world_size: int, backend: str, host: str, port: int):
|
||||
"""Initializes the global distributed environment
|
||||
|
||||
Args:
|
||||
rank (int): rank for the default process group.
|
||||
world_size (int): world size of the default process group.
|
||||
backend (str): backend for ``torch.distributed``
|
||||
host (str): the master address for distributed training.
|
||||
port (str): the master port for distributed training
|
||||
"""
|
||||
# initialize the default process group
|
||||
init_method = f'tcp://[{host}]:{port}'
|
||||
dist.init_process_group(rank=rank, world_size=world_size, backend=backend, init_method=init_method)
|
||||
|
||||
# None will give the default global process group for pytorch dist operations
|
||||
ranks = list(range(world_size))
|
||||
cpu_group = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else None
|
||||
self._register_dist(rank, world_size, dist.GroupMember.WORLD, cpu_group, ranks, ParallelMode.GLOBAL)
|
||||
self.add_global_rank(ParallelMode.GLOBAL, rank)
|
||||
|
||||
def _register_dist(self, local_rank, world_size, process_group, cpu_group, ranks_in_group, mode):
|
||||
self._add_local_rank(mode, local_rank)
|
||||
self._add_world_size(mode, world_size)
|
||||
self._add_group(mode, process_group)
|
||||
self._add_cpu_group(mode, cpu_group)
|
||||
self._add_ranks_in_group(mode, ranks_in_group)
|
||||
|
||||
def check_sanity(self):
|
||||
"""Checks sanity of the parallel context.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if the world size does not equal to the product
|
||||
of data parallel size, pipeline parallel size and tensor parallel size.
|
||||
"""
|
||||
dps = self.data_parallel_size
|
||||
pps = self.pipeline_parallel_size
|
||||
tps = self.tensor_parallel_size
|
||||
ws = self.world_size
|
||||
assert ws == dps * pps * \
|
||||
tps, f"Expected the world size {ws} to be equal to data" \
|
||||
f" parallel size ({dps}) * pipeline parallel size " \
|
||||
f"({pps}) * tensor parallel size ({tps})"
|
||||
|
||||
def _set_parallel_size_from_config(self, config: dict, key: str, attr_name: str):
|
||||
if key in config:
|
||||
ele = config[key]
|
||||
if isinstance(ele, int):
|
||||
setattr(self, attr_name, ele)
|
||||
elif isinstance(ele, dict):
|
||||
setattr(self, attr_name, ele['size'])
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f'{"Parallel configuration does not support this kind of argument, please use int or dict"}')
|
||||
|
||||
def init_parallel_groups(self):
|
||||
"""Initializes the parallel groups.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if the field parallel is not present in the config file.
|
||||
"""
|
||||
|
||||
# get rank and world size
|
||||
rank = self.get_global_rank()
|
||||
world_size = self.get_world_size(ParallelMode.GLOBAL)
|
||||
self.world_size = world_size
|
||||
|
||||
# set parallel size as attributes for global context
|
||||
parallel_config = self.config.get('parallel', None)
|
||||
if parallel_config is not None:
|
||||
self._set_parallel_size_from_config(parallel_config, 'pipeline', 'pipeline_parallel_size')
|
||||
self._set_parallel_size_from_config(parallel_config, 'tensor', 'tensor_parallel_size')
|
||||
|
||||
# the user should not set the data parallel size manually
|
||||
# instead, it should be calculated based on other parallel config
|
||||
self.data_parallel_size = self.world_size // (self.pipeline_parallel_size * self.tensor_parallel_size)
|
||||
|
||||
# get the tensor parallel mode and check
|
||||
tensor_parallel_mode = None
|
||||
if parallel_config is not None and 'tensor' in \
|
||||
parallel_config and 'mode' in parallel_config['tensor']:
|
||||
tensor_parallel_mode = parallel_config['tensor']['mode']
|
||||
assert tensor_parallel_mode in ALLOWED_MODES, \
|
||||
f"mode in the parallel config must be set to one of {ALLOWED_MODES}"
|
||||
env.mode = tensor_parallel_mode
|
||||
|
||||
self.check_sanity()
|
||||
|
||||
pg_init = []
|
||||
# LSG: init data parallel process group for compatibility with other parallel module such as zero
|
||||
pg_init.append(dict(type=INITIALIZER_MAPPING['data']))
|
||||
|
||||
# LSG: init model parallel process group for compatibility with amp and clip grad
|
||||
pg_init.append(dict(type=INITIALIZER_MAPPING['model']))
|
||||
|
||||
if self.pipeline_parallel_size > 1:
|
||||
pg_init.append(dict(type=INITIALIZER_MAPPING['pipeline']))
|
||||
pg_init.append(dict(type=INITIALIZER_MAPPING['tensor']))
|
||||
|
||||
# init specific tensor parallel group
|
||||
if tensor_parallel_mode is not None:
|
||||
tensor_parallel_cfg = parallel_config['tensor'].copy()
|
||||
|
||||
# remove duplicate parameters
|
||||
tensor_parallel_cfg.pop('mode')
|
||||
tensor_parallel_cfg.pop('size')
|
||||
|
||||
# add this config to initialize later
|
||||
pg_init.append(dict(type=INITIALIZER_MAPPING[tensor_parallel_mode.lower()], **tensor_parallel_cfg))
|
||||
|
||||
# run initialization of different process groups
|
||||
for initializer_cfg in pg_init:
|
||||
cfg = initializer_cfg.copy()
|
||||
initializer_type = cfg.pop('type')
|
||||
initializer = DIST_GROUP_INITIALIZER.get_module(initializer_type)(rank, world_size, self.config,
|
||||
self.data_parallel_size,
|
||||
self.pipeline_parallel_size,
|
||||
self.tensor_parallel_size, **cfg)
|
||||
parallel_setting = initializer.init_dist_group()
|
||||
if isinstance(parallel_setting, list):
|
||||
for args in parallel_setting:
|
||||
self._register_dist(*args)
|
||||
else:
|
||||
self._register_dist(*parallel_setting)
|
||||
|
||||
def is_initialized(self, parallel_mode: ParallelMode):
|
||||
"""Returns a boolean value indicating whether `parallel_mode` is initialized
|
||||
in the current system.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
|
||||
Returns:
|
||||
bool: a boolean value indicating whether `parallel_mode` is initialized in the current system.
|
||||
"""
|
||||
return parallel_mode in self._groups
|
||||
|
||||
def destroy(self):
|
||||
"""Destroys the current distributed parallel environment.
|
||||
"""
|
||||
for mode, group in self._groups.items():
|
||||
if mode is not ParallelMode.GLOBAL:
|
||||
dist.destroy_process_group(group)
|
||||
# destroy global process group
|
||||
dist.destroy_process_group()
|
||||
self._groups.clear()
|
||||
|
||||
def set_device(self, device_ordinal: int = None):
|
||||
"""Sets distributed processes to be bound to devices.
|
||||
|
||||
Args:
|
||||
device_ordinal (int, optional): the device id to be bound to
|
||||
"""
|
||||
global_rank = self.get_global_rank()
|
||||
if device_ordinal is None:
|
||||
devices_per_node = torch.cuda.device_count()
|
||||
device_ordinal = global_rank % devices_per_node
|
||||
|
||||
torch.cuda.set_device(device_ordinal)
|
||||
if self._verbose:
|
||||
self._logger.info(f'process rank {global_rank} is bound to device {device_ordinal}')
|
||||
|
||||
def set_seed(self, seed: int):
|
||||
"""Sets seeds for all random libraries.
|
||||
|
||||
Args:
|
||||
seed (int): seed for random states
|
||||
"""
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
|
||||
global_rank = self.get_global_rank()
|
||||
|
||||
if torch.cuda.is_available():
|
||||
# create random seed for different parallel modes
|
||||
# data parallel seed are kept the same
|
||||
parallel_seed = seed
|
||||
add_seed(ParallelMode.DATA, parallel_seed)
|
||||
|
||||
# model parallel seeds are different across ranks
|
||||
pipeline_offset = self._local_ranks.get(ParallelMode.PIPELINE, 0)
|
||||
|
||||
# add seed for data parallel and tensor parallel only
|
||||
if self.is_initialized(ParallelMode.TENSOR):
|
||||
tp_rank = self.get_local_rank(ParallelMode.TENSOR)
|
||||
# 100 is only to increase the diff in seeds between pipeline stages
|
||||
tp_rank_with_offset = tp_rank + pipeline_offset * 1024
|
||||
tp_seed = seed + tp_rank_with_offset
|
||||
add_seed(ParallelMode.TENSOR, tp_seed)
|
||||
|
||||
set_mode(ParallelMode.DATA)
|
||||
seeds = get_seeds()
|
||||
seed_str = ', '.join([f'{k}: {v}' for k, v in seeds.items()])
|
||||
|
||||
if self._verbose:
|
||||
self._logger.info(f"initialized seed on rank {global_rank}, "
|
||||
f"numpy: {seed}, python random: {seed}, {seed_str},"
|
||||
f"the default parallel seed is {ParallelMode.DATA}.")
|
||||
else:
|
||||
if self._verbose:
|
||||
self._logger.info(
|
||||
f"initialized seed on rank {global_rank}, "
|
||||
f"numpy: {seed}, python random: {seed}, pytorch: {seed}",
|
||||
ranks=[0])
|
||||
self._logger.info(
|
||||
'WARNING: CUDA is not available, thus CUDA RNG cannot be used to track CUDA random number states',
|
||||
ranks=[0])
|
||||
|
||||
def set_virtual_pipeline_parallel_size(self, size):
|
||||
self.virtual_pipeline_parallel_size = size
|
||||
|
||||
def set_virtual_pipeline_parallel_rank(self, rank):
|
||||
self.virtual_pipeline_parallel_rank = rank
|
||||
|
||||
|
||||
global_context = ParallelContext()
|
@@ -1,49 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from enum import Enum
|
||||
|
||||
|
||||
# parallel modes
|
||||
class ParallelMode(Enum):
|
||||
"""This is an enumeration class containing all possible parallel modes.
|
||||
"""
|
||||
|
||||
GLOBAL = 'global'
|
||||
|
||||
# common parallel
|
||||
DATA = 'data'
|
||||
|
||||
# model parallel - containing tensor and pipeline parallel groups
|
||||
# this is added to facilitate amp and grad clipping in hybrid parallel
|
||||
MODEL = 'model'
|
||||
|
||||
# pipeline parallel
|
||||
PIPELINE = 'pipe'
|
||||
|
||||
# containing all ranks in tensor parallel
|
||||
TENSOR = 'tensor'
|
||||
|
||||
# sequence parallel
|
||||
SEQUENCE = 'sequence'
|
||||
SEQUENCE_DP = 'sequence_dp'
|
||||
|
||||
# 1D Parallel
|
||||
PARALLEL_1D = '1d'
|
||||
|
||||
# 2D parallel
|
||||
PARALLEL_2D_ROW = '2d_row'
|
||||
PARALLEL_2D_COL = '2d_col'
|
||||
|
||||
# 3D parallel
|
||||
PARALLEL_3D_INPUT = '3d_input'
|
||||
PARALLEL_3D_WEIGHT = '3d_weight'
|
||||
PARALLEL_3D_OUTPUT = '3d_output'
|
||||
PARALLEL_3D_INPUT_X_WEIGHT = "3d_input_x_weight"
|
||||
PARALLEL_3D_OUTPUT_X_WEIGHT = "3d_output_x_weight"
|
||||
|
||||
# 2.5D parallel
|
||||
PARALLEL_2P5D_ROW = '2p5d_row'
|
||||
PARALLEL_2P5D_COL = '2p5d_col'
|
||||
PARALLEL_2P5D_DEP = '2p5d_dep'
|
||||
PARALLEL_2P5D_XZ = '2p5d_xz'
|
@@ -1,15 +0,0 @@
|
||||
from .initializer_1d import Initializer_1D
|
||||
from .initializer_2d import Initializer_2D
|
||||
from .initializer_2p5d import Initializer_2p5D
|
||||
from .initializer_3d import Initializer_3D
|
||||
from .initializer_data import Initializer_Data
|
||||
from .initializer_pipeline import Initializer_Pipeline
|
||||
from .initializer_sequence import Initializer_Sequence
|
||||
from .initializer_tensor import Initializer_Tensor
|
||||
from .initializer_model import Initializer_Model
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
__all__ = [
|
||||
'Initializer_Tensor', 'Initializer_Sequence', 'Initializer_Pipeline', 'Initializer_Data', 'Initializer_2p5D',
|
||||
'Initializer_2D', 'Initializer_3D', 'Initializer_1D', 'ProcessGroupInitializer', 'Initializer_Model'
|
||||
]
|
@@ -1,57 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.global_variables import tensor_parallel_env as env
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_1D(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for 1d tensor parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 1D tensor parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
1D tensor parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_1D
|
||||
env.parallel_input_1d = False
|
||||
|
||||
for i in range(self.num_group):
|
||||
ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
@@ -1,155 +0,0 @@
|
||||
import math
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.global_variables import tensor_parallel_env as env
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
def _check_summa_env_var(summa_dim):
|
||||
# check environment variable for SUMMA
|
||||
env_summa_dim = env.summa_dim
|
||||
|
||||
if env_summa_dim:
|
||||
assert int(env_summa_dim) == summa_dim, \
|
||||
'SUMMA_DIM has been set in the current environment and ' \
|
||||
'does not match with the value passed to this initialized'
|
||||
else:
|
||||
env.summa_dim = summa_dim
|
||||
|
||||
|
||||
class Initializer_2D_Row(ProcessGroupInitializer):
|
||||
"""2d tensor parallel initialization among rows.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
summa_dim (int): The dimension of SUMMA.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group, summa_dim, *args, **kwargs):
|
||||
super(Initializer_2D_Row, self).__init__(*args, **kwargs)
|
||||
self.num_group = num_group
|
||||
self.summa_dim = summa_dim
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2D tensor row parallel groups, and assign local_ranks and groups to each gpu.
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2D tensor row parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2D_ROW
|
||||
|
||||
for i in range(self.num_group):
|
||||
for j in range(self.summa_dim):
|
||||
ranks = [i * self.tensor_parallel_size + j * self.summa_dim + k for k in range(self.summa_dim)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_2D_Col(ProcessGroupInitializer):
|
||||
"""2d tensor parallel initialization among cols.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
summa_dim (int): The dimension of SUMMA.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group, summa_dim, *args, **kwargs):
|
||||
super(Initializer_2D_Col, self).__init__(*args, **kwargs)
|
||||
self.num_group = num_group
|
||||
self.summa_dim = summa_dim
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2D tensor row parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2D tensor col parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2D_COL
|
||||
|
||||
for i in range(self.num_group):
|
||||
for j in range(self.summa_dim):
|
||||
ranks = [i * self.tensor_parallel_size + j + k * self.summa_dim for k in range(self.summa_dim)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_2D(ProcessGroupInitializer):
|
||||
"""
|
||||
Serve as the single entry point to 2D parallel initialization.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.summa_dim = int(math.sqrt(self.tensor_parallel_size))
|
||||
|
||||
assert self.tensor_parallel_size == self.summa_dim ** 2, \
|
||||
"2D summa dim should equal to tensor parallel size ^ 0.5"
|
||||
_check_summa_env_var(self.summa_dim)
|
||||
|
||||
self.col_initializer = Initializer_2D_Col(self.num_group, self.summa_dim, *args, **kwargs)
|
||||
self.row_initializer = Initializer_2D_Row(self.num_group, self.summa_dim, *args, **kwargs)
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2D tensor row and col parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
||||
2D tensor parallelism's information in a list of tuples.
|
||||
"""
|
||||
parallel_setting = [self.row_initializer.init_dist_group(), self.col_initializer.init_dist_group()]
|
||||
return parallel_setting
|
@@ -1,298 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import math
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.context import Config
|
||||
from colossalai.global_variables import tensor_parallel_env as env
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
def _check_tesseract_env_var(tesseract_dim: int, tesseract_dep: int):
|
||||
# check global variable for TESSERACT
|
||||
env_tesseract_dim = env.tesseract_dim
|
||||
env_tesseract_dep = env.tesseract_dep
|
||||
|
||||
if env_tesseract_dim and env_tesseract_dep:
|
||||
assert int(env_tesseract_dim) == tesseract_dim, \
|
||||
'TESSERACT_DIM has been set in the current environment and ' \
|
||||
'does not match with the value passed to this initialized'
|
||||
assert int(env_tesseract_dep) == tesseract_dep, \
|
||||
'TESSERACT_DEP has been set in the current environment and ' \
|
||||
'does not match with the value passed to this initialized'
|
||||
else:
|
||||
env.tesseract_dim = tesseract_dim
|
||||
env.tesseract_dep = tesseract_dep
|
||||
|
||||
|
||||
# i row j col k dep
|
||||
class Initializer_2p5D_ROW(ProcessGroupInitializer):
|
||||
"""2.5d tensor parallel initialization among rows.
|
||||
|
||||
Args:
|
||||
tesseract_dim (int): The dimension of tesseract.
|
||||
tesseract_dep (int): The dimension of depth.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
|
||||
super(Initializer_2p5D_ROW, self).__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.tesseract_dep = tesseract_dep
|
||||
self.tesseract_dim = tesseract_dim
|
||||
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
|
||||
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2.5D tensor row parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2.5D tensor row parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2P5D_ROW
|
||||
|
||||
for h in range(self.num_group):
|
||||
for j in range(self.tesseract_dim):
|
||||
for k in range(self.tesseract_dep):
|
||||
ranks = [
|
||||
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
|
||||
for i in range(self.tesseract_dim)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_2p5D_Col(ProcessGroupInitializer):
|
||||
"""2.5d tensor parallel initialization among cols.
|
||||
|
||||
Args:
|
||||
tesseract_dim (int): The dimension of tesseract.
|
||||
tesseract_dep (int): The dimension of depth.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
|
||||
super(Initializer_2p5D_Col, self).__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.tesseract_dep = tesseract_dep
|
||||
self.tesseract_dim = tesseract_dim
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2.5D tensor col parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2.5D tensor col parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2P5D_COL
|
||||
|
||||
for h in range(self.num_group):
|
||||
for i in range(self.tesseract_dim):
|
||||
for k in range(self.tesseract_dep):
|
||||
ranks = [
|
||||
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
|
||||
for j in range(self.tesseract_dim)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_2p5D_Dep(ProcessGroupInitializer):
|
||||
"""2.5D tensor parallel initialization among depths.
|
||||
|
||||
Args:
|
||||
tesseract_dim (int): The dimension of tesseract.
|
||||
tesseract_dep (int): The dimension of depth.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
|
||||
super(Initializer_2p5D_Dep, self).__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.tesseract_dep = tesseract_dep
|
||||
self.tesseract_dim = tesseract_dim
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2.5D tensor depth parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2.5D tensor depth parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2P5D_DEP
|
||||
|
||||
for h in range(self.num_group):
|
||||
for i in range(self.tesseract_dim):
|
||||
for j in range(self.tesseract_dim):
|
||||
ranks = [
|
||||
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
|
||||
for k in range(self.tesseract_dep)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
# i row j col k dep
|
||||
class Initializer_2p5D_XZ(ProcessGroupInitializer):
|
||||
"""2.5d tensor parallel initialization among cols times dep.
|
||||
|
||||
Args:
|
||||
tesseract_dim (int): The dimension of tesseract.
|
||||
tesseract_dep (int): The dimension of depth.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
|
||||
super(Initializer_2p5D_XZ, self).__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.tesseract_dep = tesseract_dep
|
||||
self.tesseract_dim = tesseract_dim
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2.5D tensor colXdepth parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2.5D tensor colXdepth parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2P5D_XZ
|
||||
|
||||
for h in range(self.num_group):
|
||||
for i in range(self.tesseract_dim):
|
||||
ranks = [
|
||||
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
|
||||
for k in range(self.tesseract_dep)
|
||||
for j in range(self.tesseract_dim)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_2p5D(ProcessGroupInitializer):
|
||||
"""
|
||||
Serve as the single entry point to Tesseract parallel initialization.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
depth (int): The depth of 2.5d parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, rank: int, world_size: int, config: Config, data_parallel_size: int, pipeline_parallel_size: int,
|
||||
tensor_parallel_size: int, depth: int):
|
||||
args = (rank, world_size, config, data_parallel_size, pipeline_parallel_size, tensor_parallel_size)
|
||||
super().__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.tesseract_dim = int(math.sqrt(self.tensor_parallel_size / depth))
|
||||
self.tesseract_dep = depth
|
||||
|
||||
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
|
||||
"2.5D tesseract dim should equal to (tensor parallel size / tesseract dep) ^ 0.5"
|
||||
_check_tesseract_env_var(self.tesseract_dim, self.tesseract_dep)
|
||||
|
||||
self.col_initializer = Initializer_2p5D_Col(self.tesseract_dim, self.tesseract_dep, *args)
|
||||
self.row_initializer = Initializer_2p5D_ROW(self.tesseract_dim, self.tesseract_dep, *args)
|
||||
self.dep_initializer = Initializer_2p5D_Dep(self.tesseract_dim, self.tesseract_dep, *args)
|
||||
self.xz_initializer = Initializer_2p5D_XZ(self.tesseract_dim, self.tesseract_dep, *args)
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2.5D tensor row, col, depth, and colXdepth parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
||||
Whole 2.5D tensor parallelism's information in a list of tuples.
|
||||
"""
|
||||
parallel_setting = [
|
||||
self.col_initializer.init_dist_group(),
|
||||
self.row_initializer.init_dist_group(),
|
||||
self.dep_initializer.init_dist_group(),
|
||||
self.xz_initializer.init_dist_group()
|
||||
]
|
||||
return parallel_setting
|
@@ -1,329 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import math
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.global_variables import tensor_parallel_env as env
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
def _check_depth_env_var(depth):
|
||||
# check global variable
|
||||
env_depth = env.depth_3d
|
||||
|
||||
if env_depth:
|
||||
assert int(env_depth) == depth, \
|
||||
'DEPTH_3D has been set in the current environment and ' \
|
||||
'does not match with the value passed to this initialized'
|
||||
else:
|
||||
env.depth_3d = depth
|
||||
|
||||
|
||||
class Initializer_3D_Input(ProcessGroupInitializer):
|
||||
"""3D tensor parallel initialization among input.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
depth (int): Depth of 3D parallelism.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group: int, depth: int, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = num_group
|
||||
self.depth = depth
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
3D tensor parallelism's information among input in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_3D_INPUT
|
||||
env.input_group_3d = mode
|
||||
|
||||
for h in range(self.num_group):
|
||||
for i in range(self.depth):
|
||||
for k in range(self.depth):
|
||||
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for j in range(self.depth)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_3D_Weight(ProcessGroupInitializer):
|
||||
"""3D tensor parallel initialization among weight.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
depth (int): Depth of 3D parallelism.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group: int, depth: int, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = num_group
|
||||
self.depth = depth
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups among weight, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
3D tensor parallelism's information among weight in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_3D_WEIGHT
|
||||
env.weight_group_3d = mode
|
||||
|
||||
for h in range(self.num_group):
|
||||
for k in range(self.depth):
|
||||
for j in range(self.depth):
|
||||
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for i in range(self.depth)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_3D_Output(ProcessGroupInitializer):
|
||||
"""3D tensor parallel initialization among output.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
depth (int): Depth of 3D parallelism.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group: int, depth: int, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = num_group
|
||||
self.depth = depth
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups among output, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
3D tensor parallelism's information among output in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_3D_OUTPUT
|
||||
env.output_group_3d = mode
|
||||
|
||||
for h in range(self.num_group):
|
||||
for i in range(self.depth):
|
||||
for j in range(self.depth):
|
||||
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for k in range(self.depth)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_3D_InputxWeight(ProcessGroupInitializer):
|
||||
"""3D tensor parallel initialization among input.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
depth (int): Depth of 3D parallelism.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group: int, depth: int, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = num_group
|
||||
self.depth = depth
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
3D tensor parallelism's information among input in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_3D_INPUT_X_WEIGHT
|
||||
env.input_x_weight_group_3d = mode
|
||||
|
||||
for h in range(self.num_group):
|
||||
for k in range(self.depth):
|
||||
ranks = [
|
||||
h * self.depth**3 + i + self.depth * (j + self.depth * k)
|
||||
for j in range(self.depth)
|
||||
for i in range(self.depth)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_3D_OutputxWeight(ProcessGroupInitializer):
|
||||
"""3D tensor parallel initialization among input.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
depth (int): Depth of 3D parallelism.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group: int, depth: int, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = num_group
|
||||
self.depth = depth
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
3D tensor parallelism's information among input in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_3D_OUTPUT_X_WEIGHT
|
||||
env.output_x_weight_group_3d = mode
|
||||
|
||||
for h in range(self.num_group):
|
||||
for j in range(self.depth):
|
||||
ranks = [
|
||||
h * self.depth**3 + i + self.depth * (j + self.depth * k)
|
||||
for k in range(self.depth)
|
||||
for i in range(self.depth)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_3D(ProcessGroupInitializer):
|
||||
"""Serve as the single entry point to 3D parallel initialization.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.depth = round(math.pow(self.tensor_parallel_size, 1 / 3))
|
||||
assert self.tensor_parallel_size == self.depth ** 3, \
|
||||
f'3D depth ({self.depth}) if not cube root of tensor parallel size ({self.tensor_parallel_size})'
|
||||
_check_depth_env_var(self.depth)
|
||||
|
||||
self.input_initializer = Initializer_3D_Input(self.num_group, self.depth, *args)
|
||||
self.weight_initializer = Initializer_3D_Weight(self.num_group, self.depth, *args)
|
||||
self.output_initializer = Initializer_3D_Output(self.num_group, self.depth, *args)
|
||||
self.input_x_weight_initializer = Initializer_3D_InputxWeight(self.num_group, self.depth, *args)
|
||||
self.output_x_weight_initializer = Initializer_3D_OutputxWeight(self.num_group, self.depth, *args)
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
||||
Whole 3D tensor parallelism's information in a list of tuples.
|
||||
"""
|
||||
parallel_setting = [
|
||||
self.input_initializer.init_dist_group(),
|
||||
self.weight_initializer.init_dist_group(),
|
||||
self.output_initializer.init_dist_group(),
|
||||
self.input_x_weight_initializer.init_dist_group(),
|
||||
self.output_x_weight_initializer.init_dist_group()
|
||||
]
|
||||
return parallel_setting
|
@@ -1,55 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from torch import distributed as dist
|
||||
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Data(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for data parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_data_parallel_group = self.world_size // self.data_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize data parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
A Data parallelism's information tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.DATA
|
||||
|
||||
for i in range(self.num_data_parallel_group):
|
||||
ranks = [i + j * self.num_data_parallel_group for j in range(self.data_parallel_size)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
@@ -1,57 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Model(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for model parallelism (model parallel group contains pipeline and tensor parallel
|
||||
groups).
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.model_parallel_size = self.tensor_parallel_size * self.pipeline_parallel_size
|
||||
self.num_group = self.world_size // self.model_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize model parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
A Model parallelism's information tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.MODEL
|
||||
|
||||
for i in range(self.num_group):
|
||||
ranks = [i * self.model_parallel_size + j for j in range(self.model_parallel_size)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
@@ -1,56 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from torch import distributed as dist
|
||||
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Pipeline(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for pipeline parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process
|
||||
world_size (int): Size of whole communication world
|
||||
config (Config): Running configuration
|
||||
data_parallel_size (int): Size of data parallel
|
||||
pipeline_parallel_size (int): Size of pipeline parallel
|
||||
tensor_parallel_size (int): Size of tensor parallel
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.data_group_size = self.world_size // self.data_parallel_size
|
||||
self.pipeline_stage_size = self.data_group_size // self.pipeline_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize pipeline parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
||||
A Pipeline parallelism's information in list of tuples.
|
||||
"""
|
||||
dist_settings = list()
|
||||
for i in range(self.data_parallel_size):
|
||||
for j in range(self.pipeline_stage_size):
|
||||
pipe_ranks = list(
|
||||
range(i * self.data_group_size + j, (i + 1) * self.data_group_size, self.pipeline_stage_size))
|
||||
pipe_group_size = len(pipe_ranks)
|
||||
pipe_group = dist.new_group(pipe_ranks)
|
||||
group_cpu = dist.new_group(pipe_ranks, backend='gloo') if dist.get_backend() != 'gloo' else pipe_group
|
||||
|
||||
if self.rank in pipe_ranks:
|
||||
local_rank = pipe_ranks.index(self.rank)
|
||||
group_world_size = pipe_group_size
|
||||
process_group = pipe_group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = pipe_ranks
|
||||
dist_settings.append(
|
||||
tuple((local_rank, group_world_size, process_group, cpu_group, ranks_in_group,
|
||||
ParallelMode.PIPELINE)))
|
||||
|
||||
return dist_settings
|
@@ -1,101 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .initializer_tensor import Initializer_Tensor
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Sequence_DP(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for sequence parallelism all-reduce.
|
||||
|
||||
In Sequence Parallelism, each GPU holds the full copy of model weights,
|
||||
thus, gradient all-reduce occurs across all processes in the same pipeline stage
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process
|
||||
world_size (int): Size of whole communication world
|
||||
config (Config): Running configuration
|
||||
data_parallel_size (int): Size of data parallel
|
||||
pipeline_parallel_size (int): Size of pipeline parallel
|
||||
tensor_parallel_size (int): Size of tensor parallel
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.dp_size = self.world_size // self.pipeline_parallel_size
|
||||
self.num_group = self.pipeline_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize Sequence Parallel process groups used for gradient all-reduce.
|
||||
|
||||
Returns:
|
||||
Tuple: A tuple (local_rank, group_world_size, process_group, ranks_in_group, mode).
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.SEQUENCE_DP
|
||||
|
||||
for i in range(self.num_group):
|
||||
ranks = [i * self.dp_size + j for j in range(self.dp_size)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Sequence(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for sequence parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# reuse tensor parallel initializer code
|
||||
self._sequence_initializer = Initializer_Tensor(*args, **kwargs)
|
||||
self._sequence_dp_initializer = Initializer_Sequence_DP(*args, **kwargs)
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize Sequence parallel process groups and assign local_ranks and groups to each gpu.
|
||||
|
||||
Sequence parallelism requires 2 process groups. The first is for model forward where several processes
|
||||
exchange partial query, key and value embedding to compute self attention values. The second is for
|
||||
all-reduce to synchronize the model parameters.
|
||||
|
||||
Returns:
|
||||
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
||||
A Sequence parallelism's information in list of tuples.
|
||||
"""
|
||||
|
||||
parallel_setting = []
|
||||
|
||||
local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode = \
|
||||
self._sequence_initializer.init_dist_group()
|
||||
# change mode to sequence
|
||||
mode = ParallelMode.SEQUENCE
|
||||
|
||||
parallel_setting.append((local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode))
|
||||
parallel_setting.append(self._sequence_dp_initializer.init_dist_group())
|
||||
return parallel_setting
|
@@ -1,55 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Tensor(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for tensor parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_tensor_parallel_group = self.world_size // self.tensor_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize tensor parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
A Tensor parallelism's information tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.TENSOR
|
||||
|
||||
for i in range(self.num_tensor_parallel_group):
|
||||
ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
@@ -1,33 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from colossalai.context import Config
|
||||
|
||||
|
||||
class ProcessGroupInitializer(ABC):
|
||||
"""An object, knowing the parallelism configuration, that initializes parallel groups.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, rank: int, world_size: int, config: Config, data_parallel_size: int, pipeline_parallel_size: int,
|
||||
tensor_parallel_size: int):
|
||||
self.rank = rank
|
||||
self.world_size = world_size
|
||||
self.data_parallel_size = data_parallel_size
|
||||
self.config = config
|
||||
self.pipeline_parallel_size = pipeline_parallel_size
|
||||
self.tensor_parallel_size = tensor_parallel_size
|
||||
super().__init__()
|
||||
|
||||
@abstractmethod
|
||||
def init_dist_group(self):
|
||||
pass
|
@@ -1,18 +0,0 @@
|
||||
from ._helper import (
|
||||
add_seed,
|
||||
get_current_mode,
|
||||
get_seeds,
|
||||
get_states,
|
||||
moe_set_seed,
|
||||
reset_seeds,
|
||||
seed,
|
||||
set_mode,
|
||||
set_seed_states,
|
||||
sync_states,
|
||||
with_seed,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'seed', 'set_mode', 'with_seed', 'add_seed', 'get_seeds', 'get_states', 'get_current_mode', 'set_seed_states',
|
||||
'sync_states', 'moe_set_seed', 'reset_seeds'
|
||||
]
|
@@ -1,172 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import functools
|
||||
from contextlib import contextmanager
|
||||
|
||||
import torch.cuda
|
||||
from torch import Tensor
|
||||
|
||||
from .seed_manager import SeedManager
|
||||
from ..parallel_mode import ParallelMode
|
||||
|
||||
_SEED_MANAGER = SeedManager()
|
||||
|
||||
|
||||
def get_seeds():
|
||||
"""Returns the seeds of the seed manager.
|
||||
|
||||
Returns:
|
||||
dict: The seeds of the seed manager.
|
||||
"""
|
||||
return _SEED_MANAGER.seeds
|
||||
|
||||
|
||||
def get_states(copy=False):
|
||||
"""Returns the seed states of the seed manager.
|
||||
|
||||
Returns:
|
||||
dict: The seed states of the seed manager.
|
||||
"""
|
||||
states = _SEED_MANAGER.seed_states
|
||||
|
||||
if copy:
|
||||
new_states = dict()
|
||||
|
||||
for parallel_mode, state in states.items():
|
||||
new_states[parallel_mode] = state.clone()
|
||||
return new_states
|
||||
else:
|
||||
return _SEED_MANAGER.seed_states
|
||||
|
||||
|
||||
def get_current_mode():
|
||||
"""Returns the current mode of the seed manager.
|
||||
|
||||
Returns:
|
||||
:class:`torch.ByteTensor`: The current mode of the seed manager.
|
||||
"""
|
||||
return _SEED_MANAGER.current_mode
|
||||
|
||||
|
||||
def add_seed(parallel_mode: ParallelMode, seed: int, overwrite: bool = False):
|
||||
"""Adds a seed to the seed manager for `parallel_mode`.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
seed (int): The seed to be added
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of
|
||||
:class:`colossalai.context.ParallelMode` or the seed for `parallel_mode` has been added.
|
||||
|
||||
Note:
|
||||
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
|
||||
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
|
||||
"""
|
||||
_SEED_MANAGER.add_seed(parallel_mode, seed, overwrite)
|
||||
|
||||
|
||||
def set_mode(parallel_mode: ParallelMode):
|
||||
"""Sets the current mode of the seed manager.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
|
||||
Note:
|
||||
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
|
||||
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
|
||||
"""
|
||||
_SEED_MANAGER.set_mode(parallel_mode)
|
||||
|
||||
|
||||
def set_seed_states(parallel_mode: ParallelMode, state: Tensor):
|
||||
"""Sets the state of the seed manager for `parallel_mode`.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
state (:class:`torch.Tensor`): the state to be set.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not found in the seed manager.
|
||||
"""
|
||||
_SEED_MANAGER.set_state(parallel_mode, state)
|
||||
|
||||
|
||||
def sync_states():
|
||||
current_mode = get_current_mode()
|
||||
current_states = torch.cuda.get_rng_state()
|
||||
set_seed_states(current_mode, current_states)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def seed(parallel_mode: ParallelMode):
|
||||
""" A context for seed switch
|
||||
|
||||
Examples:
|
||||
|
||||
>>> with seed(ParallelMode.DATA):
|
||||
>>> output = F.dropout(input)
|
||||
|
||||
Note:
|
||||
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
|
||||
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
|
||||
"""
|
||||
try:
|
||||
# set to new mode
|
||||
current_mode = _SEED_MANAGER.current_mode
|
||||
yield _SEED_MANAGER.set_mode(parallel_mode)
|
||||
finally:
|
||||
# recover
|
||||
_SEED_MANAGER.set_mode(current_mode)
|
||||
|
||||
|
||||
def with_seed(func, parallel_mode: ParallelMode):
|
||||
"""
|
||||
A function wrapper which executes the function with a specified seed.
|
||||
|
||||
Examples:
|
||||
|
||||
>>> # use with decorator
|
||||
>>> @with_seed(ParallelMode.DATA)
|
||||
>>> def forward(input):
|
||||
>>> return F.dropout(input)
|
||||
>>> out = forward(input)
|
||||
>>> # OR use it inline
|
||||
>>> def forward(input):
|
||||
>>> return F.dropout(input)
|
||||
>>> wrapper_forward = with_seed(forward, ParallelMode.DATA)
|
||||
>>> out = wrapped_forward(input)
|
||||
|
||||
Note:
|
||||
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
|
||||
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
|
||||
"""
|
||||
|
||||
@functools.wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
# switch mode
|
||||
current_mode = _SEED_MANAGER.current_mode
|
||||
_SEED_MANAGER.set_mode(parallel_mode)
|
||||
|
||||
# exec func
|
||||
out = func(*args, **kwargs)
|
||||
|
||||
# recover state
|
||||
_SEED_MANAGER.set_mode(current_mode)
|
||||
|
||||
return out
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def moe_set_seed(seed):
|
||||
if torch.cuda.is_available():
|
||||
from colossalai.core import global_context as gpc
|
||||
global_rank = gpc.get_global_rank()
|
||||
diff_seed = seed + global_rank
|
||||
add_seed(ParallelMode.TENSOR, diff_seed, True)
|
||||
print(f"moe seed condition: {global_rank} with tensor seed {diff_seed}", flush=True)
|
||||
|
||||
|
||||
def reset_seeds():
|
||||
_SEED_MANAGER.reset()
|
@@ -1,89 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
|
||||
|
||||
class SeedManager:
|
||||
"""This class is a manager of all random seeds involved in the system.
|
||||
|
||||
Note:
|
||||
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
|
||||
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._current_mode = None
|
||||
self._seeds = dict()
|
||||
self._seed_states = dict()
|
||||
|
||||
@property
|
||||
def current_mode(self):
|
||||
return self._current_mode
|
||||
|
||||
@property
|
||||
def seeds(self):
|
||||
return self._seeds
|
||||
|
||||
@property
|
||||
def seed_states(self):
|
||||
return self._seed_states
|
||||
|
||||
def set_state(self, parallel_mode: ParallelMode, state: Tensor):
|
||||
"""Sets the state of the seed manager for `parallel_mode`.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
state (:class:`torch.Tensor`): the state to be set.
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not found in the seed manager.
|
||||
"""
|
||||
assert parallel_mode in self._seed_states, f'Parallel mode {parallel_mode} is not found in the seed manager'
|
||||
self._seed_states[parallel_mode] = state
|
||||
|
||||
def set_mode(self, parallel_mode: ParallelMode):
|
||||
"""Sets the current mode of the seed manager.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
"""
|
||||
if self.current_mode:
|
||||
# save the current state for current mode
|
||||
self._seed_states[self._current_mode] = torch.cuda.get_rng_state()
|
||||
|
||||
# set the new state for new mode
|
||||
self._current_mode = parallel_mode
|
||||
torch.cuda.set_rng_state(self._seed_states[parallel_mode])
|
||||
|
||||
def add_seed(self, parallel_mode: ParallelMode, seed: int, overwrite: bool = False):
|
||||
"""Adds a seed to the seed manager for `parallel_mode`.
|
||||
|
||||
Args:
|
||||
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
|
||||
seed (int): The seed to be added.
|
||||
overwrite (bool, optional): Whether allows to overwrite the seed that has been set already
|
||||
|
||||
Raises:
|
||||
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of :class:`colossalai.context.ParallelMode`
|
||||
or the seed for `parallel_mode` has been added.
|
||||
"""
|
||||
assert isinstance(parallel_mode, ParallelMode), 'A valid ParallelMode must be provided'
|
||||
if overwrite is False:
|
||||
assert parallel_mode not in self._seed_states, f'The seed for {parallel_mode} has been added'
|
||||
elif parallel_mode in self._seed_states:
|
||||
print(f"Warning: {parallel_mode} seed has been overwritten.", flush=True)
|
||||
|
||||
current_state = torch.cuda.get_rng_state()
|
||||
torch.cuda.manual_seed(seed)
|
||||
self._seed_states[parallel_mode] = torch.cuda.get_rng_state()
|
||||
self._seeds[parallel_mode] = seed
|
||||
torch.cuda.set_rng_state(current_state)
|
||||
|
||||
def reset(self):
|
||||
self._current_mode = None
|
||||
self._seeds = dict()
|
||||
self._seed_states = dict()
|
Reference in New Issue
Block a user