mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 01:55:12 +00:00
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692) * [legacy] remove cli of benchmark and update optim (#4690) * [legacy] remove cli of benchmark and update optim * [doc] fix cli doc test * [legacy] fix engine clip grad norm * [legacy] remove outdated colo tensor (#4694) * [legacy] remove outdated colo tensor * [test] fix test import * [legacy] move outdated zero to legacy (#4696) * [legacy] clean up utils (#4700) * [legacy] clean up utils * [example] update examples * [legacy] clean up amp * [legacy] fix amp module * [legacy] clean up gpc (#4742) * [legacy] clean up context * [legacy] clean core, constants and global vars * [legacy] refactor initialize * [example] fix examples ci * [example] fix examples ci * [legacy] fix tests * [example] fix gpt example * [example] fix examples ci * [devops] fix ci installation * [example] fix examples ci
This commit is contained in:
39
colossalai/legacy/amp/apex_amp/apex_amp.py
Normal file
39
colossalai/legacy/amp/apex_amp/apex_amp.py
Normal file
@@ -0,0 +1,39 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
try:
|
||||
import apex.amp as apex_amp
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
from torch import Tensor
|
||||
|
||||
from colossalai.interface import OptimizerWrapper
|
||||
from colossalai.legacy.utils import clip_grad_norm_fp32
|
||||
|
||||
|
||||
class ApexAMPOptimizer(OptimizerWrapper):
|
||||
""" A wrapper class for APEX optimizer and it implements apex-specific backward and clip_grad_norm
|
||||
methods
|
||||
"""
|
||||
|
||||
def backward(self, loss: Tensor):
|
||||
"""Backward pass to get all gradients
|
||||
|
||||
Args:
|
||||
loss (torch.Tensor): Loss computed by a loss function
|
||||
"""
|
||||
with apex_amp.scale_loss(loss, self.optim) as scaled_loss:
|
||||
scaled_loss.backward()
|
||||
|
||||
def clip_grad_norm(self, model: nn.Module, max_norm: float):
|
||||
"""Clip gradients by norm
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): Your model object
|
||||
max_norm (float): The max norm value for gradient clipping
|
||||
"""
|
||||
if max_norm > 0:
|
||||
clip_grad_norm_fp32(apex_amp.master_params(self.optim), max_norm)
|
Reference in New Issue
Block a user