[legacy] clean up legacy code (#4743)

* [legacy] remove outdated codes of pipeline (#4692)

* [legacy] remove cli of benchmark and update optim (#4690)

* [legacy] remove cli of benchmark and update optim

* [doc] fix cli doc test

* [legacy] fix engine clip grad norm

* [legacy] remove outdated colo tensor (#4694)

* [legacy] remove outdated colo tensor

* [test] fix test import

* [legacy] move outdated zero to legacy (#4696)

* [legacy] clean up utils (#4700)

* [legacy] clean up utils

* [example] update examples

* [legacy] clean up amp

* [legacy] fix amp module

* [legacy] clean up gpc (#4742)

* [legacy] clean up context

* [legacy] clean core, constants and global vars

* [legacy] refactor initialize

* [example] fix examples ci

* [example] fix examples ci

* [legacy] fix tests

* [example] fix gpt example

* [example] fix examples ci

* [devops] fix ci installation

* [example] fix examples ci
This commit is contained in:
Hongxin Liu
2023-09-18 16:31:06 +08:00
committed by GitHub
parent 32e7f99416
commit b5f9e37c70
342 changed files with 2919 additions and 4182 deletions

View File

@@ -0,0 +1,45 @@
from typing import Optional
import torch.nn as nn
from torch.nn.modules.loss import _Loss
from torch.optim import Optimizer
from colossalai.context import Config
from .torch_amp import TorchAMPLoss, TorchAMPModel, TorchAMPOptimizer
def convert_to_torch_amp(model: nn.Module,
optimizer: Optimizer,
criterion: Optional[_Loss] = None,
amp_config: Optional[Config] = None):
"""A helper function to wrap training components with Pytorch AMP modules
Args:
model (:class:`torch.nn.Module`): your model object.
optimizer (:class:`torch.optim.Optimizer`): your optimizer object
criterion (:class:`torch.nn.modules.loss._Loss`, optional): your loss function object
amp_config (:class:`colossalai.context.Config` or dict, optional): configuration for Pytorch AMP.
The ``amp_config`` should include parameters below:
::
init_scale (float, optional, default=2.**16)
growth_factor (float, optional, default=2.0)
backoff_factor (float, optional, default=0.5)
growth_interval (int, optional, default=2000)
enabled (bool, optional, default=True)
Returns:
A tuple (model, optimizer, criterion)
"""
model = TorchAMPModel(model)
if amp_config is None:
amp_config = dict()
optimizer = TorchAMPOptimizer(optimizer, **amp_config)
if criterion:
criterion = TorchAMPLoss(criterion)
return model, optimizer, criterion
__all__ = ['convert_to_torch_amp', 'TorchAMPModel', 'TorchAMPLoss', 'TorchAMPOptimizer']