mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 20:10:17 +00:00
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692) * [legacy] remove cli of benchmark and update optim (#4690) * [legacy] remove cli of benchmark and update optim * [doc] fix cli doc test * [legacy] fix engine clip grad norm * [legacy] remove outdated colo tensor (#4694) * [legacy] remove outdated colo tensor * [test] fix test import * [legacy] move outdated zero to legacy (#4696) * [legacy] clean up utils (#4700) * [legacy] clean up utils * [example] update examples * [legacy] clean up amp * [legacy] fix amp module * [legacy] clean up gpc (#4742) * [legacy] clean up context * [legacy] clean core, constants and global vars * [legacy] refactor initialize * [example] fix examples ci * [example] fix examples ci * [legacy] fix tests * [example] fix gpt example * [example] fix examples ci * [devops] fix ci installation * [example] fix examples ci
This commit is contained in:
@@ -0,0 +1,15 @@
|
||||
from .initializer_1d import Initializer_1D
|
||||
from .initializer_2d import Initializer_2D
|
||||
from .initializer_2p5d import Initializer_2p5D
|
||||
from .initializer_3d import Initializer_3D
|
||||
from .initializer_data import Initializer_Data
|
||||
from .initializer_model import Initializer_Model
|
||||
from .initializer_pipeline import Initializer_Pipeline
|
||||
from .initializer_sequence import Initializer_Sequence
|
||||
from .initializer_tensor import Initializer_Tensor
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
__all__ = [
|
||||
'Initializer_Tensor', 'Initializer_Sequence', 'Initializer_Pipeline', 'Initializer_Data', 'Initializer_2p5D',
|
||||
'Initializer_2D', 'Initializer_3D', 'Initializer_1D', 'ProcessGroupInitializer', 'Initializer_Model'
|
||||
]
|
@@ -0,0 +1,57 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.legacy.global_variables import tensor_parallel_env as env
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_1D(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for 1d tensor parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 1D tensor parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
1D tensor parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_1D
|
||||
env.parallel_input_1d = False
|
||||
|
||||
for i in range(self.num_group):
|
||||
ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
@@ -0,0 +1,155 @@
|
||||
import math
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.legacy.global_variables import tensor_parallel_env as env
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
def _check_summa_env_var(summa_dim):
|
||||
# check environment variable for SUMMA
|
||||
env_summa_dim = env.summa_dim
|
||||
|
||||
if env_summa_dim:
|
||||
assert int(env_summa_dim) == summa_dim, \
|
||||
'SUMMA_DIM has been set in the current environment and ' \
|
||||
'does not match with the value passed to this initialized'
|
||||
else:
|
||||
env.summa_dim = summa_dim
|
||||
|
||||
|
||||
class Initializer_2D_Row(ProcessGroupInitializer):
|
||||
"""2d tensor parallel initialization among rows.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
summa_dim (int): The dimension of SUMMA.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group, summa_dim, *args, **kwargs):
|
||||
super(Initializer_2D_Row, self).__init__(*args, **kwargs)
|
||||
self.num_group = num_group
|
||||
self.summa_dim = summa_dim
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2D tensor row parallel groups, and assign local_ranks and groups to each gpu.
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2D tensor row parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2D_ROW
|
||||
|
||||
for i in range(self.num_group):
|
||||
for j in range(self.summa_dim):
|
||||
ranks = [i * self.tensor_parallel_size + j * self.summa_dim + k for k in range(self.summa_dim)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_2D_Col(ProcessGroupInitializer):
|
||||
"""2d tensor parallel initialization among cols.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
summa_dim (int): The dimension of SUMMA.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group, summa_dim, *args, **kwargs):
|
||||
super(Initializer_2D_Col, self).__init__(*args, **kwargs)
|
||||
self.num_group = num_group
|
||||
self.summa_dim = summa_dim
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2D tensor row parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2D tensor col parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2D_COL
|
||||
|
||||
for i in range(self.num_group):
|
||||
for j in range(self.summa_dim):
|
||||
ranks = [i * self.tensor_parallel_size + j + k * self.summa_dim for k in range(self.summa_dim)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_2D(ProcessGroupInitializer):
|
||||
"""
|
||||
Serve as the single entry point to 2D parallel initialization.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.summa_dim = int(math.sqrt(self.tensor_parallel_size))
|
||||
|
||||
assert self.tensor_parallel_size == self.summa_dim ** 2, \
|
||||
"2D summa dim should equal to tensor parallel size ^ 0.5"
|
||||
_check_summa_env_var(self.summa_dim)
|
||||
|
||||
self.col_initializer = Initializer_2D_Col(self.num_group, self.summa_dim, *args, **kwargs)
|
||||
self.row_initializer = Initializer_2D_Row(self.num_group, self.summa_dim, *args, **kwargs)
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2D tensor row and col parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
||||
2D tensor parallelism's information in a list of tuples.
|
||||
"""
|
||||
parallel_setting = [self.row_initializer.init_dist_group(), self.col_initializer.init_dist_group()]
|
||||
return parallel_setting
|
@@ -0,0 +1,298 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import math
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.context import Config
|
||||
from colossalai.legacy.global_variables import tensor_parallel_env as env
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
def _check_tesseract_env_var(tesseract_dim: int, tesseract_dep: int):
|
||||
# check global variable for TESSERACT
|
||||
env_tesseract_dim = env.tesseract_dim
|
||||
env_tesseract_dep = env.tesseract_dep
|
||||
|
||||
if env_tesseract_dim and env_tesseract_dep:
|
||||
assert int(env_tesseract_dim) == tesseract_dim, \
|
||||
'TESSERACT_DIM has been set in the current environment and ' \
|
||||
'does not match with the value passed to this initialized'
|
||||
assert int(env_tesseract_dep) == tesseract_dep, \
|
||||
'TESSERACT_DEP has been set in the current environment and ' \
|
||||
'does not match with the value passed to this initialized'
|
||||
else:
|
||||
env.tesseract_dim = tesseract_dim
|
||||
env.tesseract_dep = tesseract_dep
|
||||
|
||||
|
||||
# i row j col k dep
|
||||
class Initializer_2p5D_ROW(ProcessGroupInitializer):
|
||||
"""2.5d tensor parallel initialization among rows.
|
||||
|
||||
Args:
|
||||
tesseract_dim (int): The dimension of tesseract.
|
||||
tesseract_dep (int): The dimension of depth.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
|
||||
super(Initializer_2p5D_ROW, self).__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.tesseract_dep = tesseract_dep
|
||||
self.tesseract_dim = tesseract_dim
|
||||
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
|
||||
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2.5D tensor row parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2.5D tensor row parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2P5D_ROW
|
||||
|
||||
for h in range(self.num_group):
|
||||
for j in range(self.tesseract_dim):
|
||||
for k in range(self.tesseract_dep):
|
||||
ranks = [
|
||||
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
|
||||
for i in range(self.tesseract_dim)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_2p5D_Col(ProcessGroupInitializer):
|
||||
"""2.5d tensor parallel initialization among cols.
|
||||
|
||||
Args:
|
||||
tesseract_dim (int): The dimension of tesseract.
|
||||
tesseract_dep (int): The dimension of depth.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
|
||||
super(Initializer_2p5D_Col, self).__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.tesseract_dep = tesseract_dep
|
||||
self.tesseract_dim = tesseract_dim
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2.5D tensor col parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2.5D tensor col parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2P5D_COL
|
||||
|
||||
for h in range(self.num_group):
|
||||
for i in range(self.tesseract_dim):
|
||||
for k in range(self.tesseract_dep):
|
||||
ranks = [
|
||||
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
|
||||
for j in range(self.tesseract_dim)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_2p5D_Dep(ProcessGroupInitializer):
|
||||
"""2.5D tensor parallel initialization among depths.
|
||||
|
||||
Args:
|
||||
tesseract_dim (int): The dimension of tesseract.
|
||||
tesseract_dep (int): The dimension of depth.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
|
||||
super(Initializer_2p5D_Dep, self).__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.tesseract_dep = tesseract_dep
|
||||
self.tesseract_dim = tesseract_dim
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2.5D tensor depth parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2.5D tensor depth parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2P5D_DEP
|
||||
|
||||
for h in range(self.num_group):
|
||||
for i in range(self.tesseract_dim):
|
||||
for j in range(self.tesseract_dim):
|
||||
ranks = [
|
||||
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
|
||||
for k in range(self.tesseract_dep)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
# i row j col k dep
|
||||
class Initializer_2p5D_XZ(ProcessGroupInitializer):
|
||||
"""2.5d tensor parallel initialization among cols times dep.
|
||||
|
||||
Args:
|
||||
tesseract_dim (int): The dimension of tesseract.
|
||||
tesseract_dep (int): The dimension of depth.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
|
||||
super(Initializer_2p5D_XZ, self).__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.tesseract_dep = tesseract_dep
|
||||
self.tesseract_dim = tesseract_dim
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2.5D tensor colXdepth parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
2.5D tensor colXdepth parallelism's information in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_2P5D_XZ
|
||||
|
||||
for h in range(self.num_group):
|
||||
for i in range(self.tesseract_dim):
|
||||
ranks = [
|
||||
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
|
||||
for k in range(self.tesseract_dep)
|
||||
for j in range(self.tesseract_dim)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_2p5D(ProcessGroupInitializer):
|
||||
"""
|
||||
Serve as the single entry point to Tesseract parallel initialization.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
depth (int): The depth of 2.5d parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, rank: int, world_size: int, config: Config, data_parallel_size: int, pipeline_parallel_size: int,
|
||||
tensor_parallel_size: int, depth: int):
|
||||
args = (rank, world_size, config, data_parallel_size, pipeline_parallel_size, tensor_parallel_size)
|
||||
super().__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.tesseract_dim = int(math.sqrt(self.tensor_parallel_size / depth))
|
||||
self.tesseract_dep = depth
|
||||
|
||||
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
|
||||
"2.5D tesseract dim should equal to (tensor parallel size / tesseract dep) ^ 0.5"
|
||||
_check_tesseract_env_var(self.tesseract_dim, self.tesseract_dep)
|
||||
|
||||
self.col_initializer = Initializer_2p5D_Col(self.tesseract_dim, self.tesseract_dep, *args)
|
||||
self.row_initializer = Initializer_2p5D_ROW(self.tesseract_dim, self.tesseract_dep, *args)
|
||||
self.dep_initializer = Initializer_2p5D_Dep(self.tesseract_dim, self.tesseract_dep, *args)
|
||||
self.xz_initializer = Initializer_2p5D_XZ(self.tesseract_dim, self.tesseract_dep, *args)
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 2.5D tensor row, col, depth, and colXdepth parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
||||
Whole 2.5D tensor parallelism's information in a list of tuples.
|
||||
"""
|
||||
parallel_setting = [
|
||||
self.col_initializer.init_dist_group(),
|
||||
self.row_initializer.init_dist_group(),
|
||||
self.dep_initializer.init_dist_group(),
|
||||
self.xz_initializer.init_dist_group()
|
||||
]
|
||||
return parallel_setting
|
@@ -0,0 +1,329 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import math
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.legacy.global_variables import tensor_parallel_env as env
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
def _check_depth_env_var(depth):
|
||||
# check global variable
|
||||
env_depth = env.depth_3d
|
||||
|
||||
if env_depth:
|
||||
assert int(env_depth) == depth, \
|
||||
'DEPTH_3D has been set in the current environment and ' \
|
||||
'does not match with the value passed to this initialized'
|
||||
else:
|
||||
env.depth_3d = depth
|
||||
|
||||
|
||||
class Initializer_3D_Input(ProcessGroupInitializer):
|
||||
"""3D tensor parallel initialization among input.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
depth (int): Depth of 3D parallelism.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group: int, depth: int, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = num_group
|
||||
self.depth = depth
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
3D tensor parallelism's information among input in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_3D_INPUT
|
||||
env.input_group_3d = mode
|
||||
|
||||
for h in range(self.num_group):
|
||||
for i in range(self.depth):
|
||||
for k in range(self.depth):
|
||||
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for j in range(self.depth)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_3D_Weight(ProcessGroupInitializer):
|
||||
"""3D tensor parallel initialization among weight.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
depth (int): Depth of 3D parallelism.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group: int, depth: int, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = num_group
|
||||
self.depth = depth
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups among weight, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
3D tensor parallelism's information among weight in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_3D_WEIGHT
|
||||
env.weight_group_3d = mode
|
||||
|
||||
for h in range(self.num_group):
|
||||
for k in range(self.depth):
|
||||
for j in range(self.depth):
|
||||
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for i in range(self.depth)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_3D_Output(ProcessGroupInitializer):
|
||||
"""3D tensor parallel initialization among output.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
depth (int): Depth of 3D parallelism.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group: int, depth: int, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = num_group
|
||||
self.depth = depth
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups among output, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
3D tensor parallelism's information among output in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_3D_OUTPUT
|
||||
env.output_group_3d = mode
|
||||
|
||||
for h in range(self.num_group):
|
||||
for i in range(self.depth):
|
||||
for j in range(self.depth):
|
||||
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for k in range(self.depth)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_3D_InputxWeight(ProcessGroupInitializer):
|
||||
"""3D tensor parallel initialization among input.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
depth (int): Depth of 3D parallelism.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group: int, depth: int, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = num_group
|
||||
self.depth = depth
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
3D tensor parallelism's information among input in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_3D_INPUT_X_WEIGHT
|
||||
env.input_x_weight_group_3d = mode
|
||||
|
||||
for h in range(self.num_group):
|
||||
for k in range(self.depth):
|
||||
ranks = [
|
||||
h * self.depth**3 + i + self.depth * (j + self.depth * k)
|
||||
for j in range(self.depth)
|
||||
for i in range(self.depth)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_3D_OutputxWeight(ProcessGroupInitializer):
|
||||
"""3D tensor parallel initialization among input.
|
||||
|
||||
Args:
|
||||
num_group (int): The number of all tensor groups.
|
||||
depth (int): Depth of 3D parallelism.
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, num_group: int, depth: int, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = num_group
|
||||
self.depth = depth
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
3D tensor parallelism's information among input in a tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.PARALLEL_3D_OUTPUT_X_WEIGHT
|
||||
env.output_x_weight_group_3d = mode
|
||||
|
||||
for h in range(self.num_group):
|
||||
for j in range(self.depth):
|
||||
ranks = [
|
||||
h * self.depth**3 + i + self.depth * (j + self.depth * k)
|
||||
for k in range(self.depth)
|
||||
for i in range(self.depth)
|
||||
]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_3D(ProcessGroupInitializer):
|
||||
"""Serve as the single entry point to 3D parallel initialization.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args):
|
||||
super().__init__(*args)
|
||||
self.num_group = self.world_size // self.tensor_parallel_size
|
||||
self.depth = round(math.pow(self.tensor_parallel_size, 1 / 3))
|
||||
assert self.tensor_parallel_size == self.depth ** 3, \
|
||||
f'3D depth ({self.depth}) if not cube root of tensor parallel size ({self.tensor_parallel_size})'
|
||||
_check_depth_env_var(self.depth)
|
||||
|
||||
self.input_initializer = Initializer_3D_Input(self.num_group, self.depth, *args)
|
||||
self.weight_initializer = Initializer_3D_Weight(self.num_group, self.depth, *args)
|
||||
self.output_initializer = Initializer_3D_Output(self.num_group, self.depth, *args)
|
||||
self.input_x_weight_initializer = Initializer_3D_InputxWeight(self.num_group, self.depth, *args)
|
||||
self.output_x_weight_initializer = Initializer_3D_OutputxWeight(self.num_group, self.depth, *args)
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize 3D tensor parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
||||
Whole 3D tensor parallelism's information in a list of tuples.
|
||||
"""
|
||||
parallel_setting = [
|
||||
self.input_initializer.init_dist_group(),
|
||||
self.weight_initializer.init_dist_group(),
|
||||
self.output_initializer.init_dist_group(),
|
||||
self.input_x_weight_initializer.init_dist_group(),
|
||||
self.output_x_weight_initializer.init_dist_group()
|
||||
]
|
||||
return parallel_setting
|
@@ -0,0 +1,55 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from torch import distributed as dist
|
||||
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Data(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for data parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_data_parallel_group = self.world_size // self.data_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize data parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
A Data parallelism's information tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.DATA
|
||||
|
||||
for i in range(self.num_data_parallel_group):
|
||||
ranks = [i + j * self.num_data_parallel_group for j in range(self.data_parallel_size)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
@@ -0,0 +1,57 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Model(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for model parallelism (model parallel group contains pipeline and tensor parallel
|
||||
groups).
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.model_parallel_size = self.tensor_parallel_size * self.pipeline_parallel_size
|
||||
self.num_group = self.world_size // self.model_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize model parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
A Model parallelism's information tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.MODEL
|
||||
|
||||
for i in range(self.num_group):
|
||||
ranks = [i * self.model_parallel_size + j for j in range(self.model_parallel_size)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
@@ -0,0 +1,56 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from torch import distributed as dist
|
||||
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Pipeline(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for pipeline parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process
|
||||
world_size (int): Size of whole communication world
|
||||
config (Config): Running configuration
|
||||
data_parallel_size (int): Size of data parallel
|
||||
pipeline_parallel_size (int): Size of pipeline parallel
|
||||
tensor_parallel_size (int): Size of tensor parallel
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.data_group_size = self.world_size // self.data_parallel_size
|
||||
self.pipeline_stage_size = self.data_group_size // self.pipeline_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize pipeline parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
||||
A Pipeline parallelism's information in list of tuples.
|
||||
"""
|
||||
dist_settings = list()
|
||||
for i in range(self.data_parallel_size):
|
||||
for j in range(self.pipeline_stage_size):
|
||||
pipe_ranks = list(
|
||||
range(i * self.data_group_size + j, (i + 1) * self.data_group_size, self.pipeline_stage_size))
|
||||
pipe_group_size = len(pipe_ranks)
|
||||
pipe_group = dist.new_group(pipe_ranks)
|
||||
group_cpu = dist.new_group(pipe_ranks, backend='gloo') if dist.get_backend() != 'gloo' else pipe_group
|
||||
|
||||
if self.rank in pipe_ranks:
|
||||
local_rank = pipe_ranks.index(self.rank)
|
||||
group_world_size = pipe_group_size
|
||||
process_group = pipe_group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = pipe_ranks
|
||||
dist_settings.append(
|
||||
tuple((local_rank, group_world_size, process_group, cpu_group, ranks_in_group,
|
||||
ParallelMode.PIPELINE)))
|
||||
|
||||
return dist_settings
|
@@ -0,0 +1,101 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .initializer_tensor import Initializer_Tensor
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Sequence_DP(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for sequence parallelism all-reduce.
|
||||
|
||||
In Sequence Parallelism, each GPU holds the full copy of model weights,
|
||||
thus, gradient all-reduce occurs across all processes in the same pipeline stage
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process
|
||||
world_size (int): Size of whole communication world
|
||||
config (Config): Running configuration
|
||||
data_parallel_size (int): Size of data parallel
|
||||
pipeline_parallel_size (int): Size of pipeline parallel
|
||||
tensor_parallel_size (int): Size of tensor parallel
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.dp_size = self.world_size // self.pipeline_parallel_size
|
||||
self.num_group = self.pipeline_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize Sequence Parallel process groups used for gradient all-reduce.
|
||||
|
||||
Returns:
|
||||
Tuple: A tuple (local_rank, group_world_size, process_group, ranks_in_group, mode).
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.SEQUENCE_DP
|
||||
|
||||
for i in range(self.num_group):
|
||||
ranks = [i * self.dp_size + j for j in range(self.dp_size)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Sequence(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for sequence parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# reuse tensor parallel initializer code
|
||||
self._sequence_initializer = Initializer_Tensor(*args, **kwargs)
|
||||
self._sequence_dp_initializer = Initializer_Sequence_DP(*args, **kwargs)
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize Sequence parallel process groups and assign local_ranks and groups to each gpu.
|
||||
|
||||
Sequence parallelism requires 2 process groups. The first is for model forward where several processes
|
||||
exchange partial query, key and value embedding to compute self attention values. The second is for
|
||||
all-reduce to synchronize the model parameters.
|
||||
|
||||
Returns:
|
||||
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
||||
A Sequence parallelism's information in list of tuples.
|
||||
"""
|
||||
|
||||
parallel_setting = []
|
||||
|
||||
local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode = \
|
||||
self._sequence_initializer.init_dist_group()
|
||||
# change mode to sequence
|
||||
mode = ParallelMode.SEQUENCE
|
||||
|
||||
parallel_setting.append((local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode))
|
||||
parallel_setting.append(self._sequence_dp_initializer.init_dist_group())
|
||||
return parallel_setting
|
@@ -0,0 +1,55 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
|
||||
|
||||
from ..parallel_mode import ParallelMode
|
||||
from .process_group_initializer import ProcessGroupInitializer
|
||||
|
||||
|
||||
@DIST_GROUP_INITIALIZER.register_module
|
||||
class Initializer_Tensor(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for tensor parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_tensor_parallel_group = self.world_size // self.tensor_parallel_size
|
||||
|
||||
def init_dist_group(self):
|
||||
"""Initialize tensor parallel groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
||||
A Tensor parallelism's information tuple.
|
||||
"""
|
||||
local_rank = None
|
||||
ranks_in_group = None
|
||||
process_group = None
|
||||
cpu_group = None
|
||||
group_world_size = None
|
||||
mode = ParallelMode.TENSOR
|
||||
|
||||
for i in range(self.num_tensor_parallel_group):
|
||||
ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)]
|
||||
group = dist.new_group(ranks)
|
||||
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
|
||||
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
@@ -0,0 +1,33 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from colossalai.context import Config
|
||||
|
||||
|
||||
class ProcessGroupInitializer(ABC):
|
||||
"""An object, knowing the parallelism configuration, that initializes parallel groups.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
config (Config): Running configuration.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, rank: int, world_size: int, config: Config, data_parallel_size: int, pipeline_parallel_size: int,
|
||||
tensor_parallel_size: int):
|
||||
self.rank = rank
|
||||
self.world_size = world_size
|
||||
self.data_parallel_size = data_parallel_size
|
||||
self.config = config
|
||||
self.pipeline_parallel_size = pipeline_parallel_size
|
||||
self.tensor_parallel_size = tensor_parallel_size
|
||||
super().__init__()
|
||||
|
||||
@abstractmethod
|
||||
def init_dist_group(self):
|
||||
pass
|
Reference in New Issue
Block a user