[legacy] clean up legacy code (#4743)

* [legacy] remove outdated codes of pipeline (#4692)

* [legacy] remove cli of benchmark and update optim (#4690)

* [legacy] remove cli of benchmark and update optim

* [doc] fix cli doc test

* [legacy] fix engine clip grad norm

* [legacy] remove outdated colo tensor (#4694)

* [legacy] remove outdated colo tensor

* [test] fix test import

* [legacy] move outdated zero to legacy (#4696)

* [legacy] clean up utils (#4700)

* [legacy] clean up utils

* [example] update examples

* [legacy] clean up amp

* [legacy] fix amp module

* [legacy] clean up gpc (#4742)

* [legacy] clean up context

* [legacy] clean core, constants and global vars

* [legacy] refactor initialize

* [example] fix examples ci

* [example] fix examples ci

* [legacy] fix tests

* [example] fix gpt example

* [example] fix examples ci

* [devops] fix ci installation

* [example] fix examples ci
This commit is contained in:
Hongxin Liu
2023-09-18 16:31:06 +08:00
committed by GitHub
parent 32e7f99416
commit b5f9e37c70
342 changed files with 2919 additions and 4182 deletions

View File

@@ -5,10 +5,10 @@ import torch.distributed as dist
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.communication.collective import all_gather, all_reduce, reduce, reduce_scatter
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.utils import get_current_device
@@ -31,9 +31,9 @@ def matmul_2d(
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`, optional):
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`, optional):
row parallel mode, defaults to ParallelMode.PARALLEL_2D_ROW.
col_parallel_mode (:class:`colossalai.context.ParallelMode`, optional):
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`, optional):
column parallel mode, defaults to ParallelMode.PARALLEL_2D_COL.
Returns:
@@ -146,8 +146,8 @@ def classifier_2d(A: Tensor, B: Tensor, bias: Optional[Tensor], summa_dim: int,
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
@@ -172,8 +172,8 @@ class Matmul_AB_2D(torch.autograd.Function):
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
@@ -299,8 +299,8 @@ class Matmul_ABT_2D(torch.autograd.Function):
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
column parallel mode, defaults to ParallelMode.PARALLEL_2D_COL.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
@@ -433,8 +433,8 @@ class Matmul_ATB_2D(torch.autograd.Function):
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
@@ -620,8 +620,8 @@ def add_bias_2d(input_: Tensor, bias: Tensor, output_size_per_partition: int, ro
output_size_per_partition (int): size of output per partition.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
skip_bias_add (bool):
If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion.
data_parallel_rank (int): data parallel rank.
@@ -685,8 +685,8 @@ def layernorm_2d(input_: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int, r
E_x (:class:`torch.tensor`): mean.
Var_x (:class:`torch.tensor`): variance.
hidden_size (int): hidden size.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@@ -719,7 +719,7 @@ def all_gather_tensor_2d(tensor: Tensor, dim: int, parallel_mode: ParallelMode)
Args:
tensor (:class:`torch.tensor`): Input tensor.
dim (int): Dimension to gather.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@@ -767,7 +767,7 @@ def reduce_tensor_2d(input_: Tensor, parallel_mode: ParallelMode) -> Tensor:
Args:
input_ (:class:`torch.tensor`): Input tensor.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@@ -795,7 +795,7 @@ def reduce_scatter_tensor_2d(tensor: Tensor, dim: int, parallel_mode: ParallelMo
Args:
tensor (:class:`torch.tensor`): Input tensor.
dim (int): Dimension to reduce.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found