mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 04:50:17 +00:00
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692) * [legacy] remove cli of benchmark and update optim (#4690) * [legacy] remove cli of benchmark and update optim * [doc] fix cli doc test * [legacy] fix engine clip grad norm * [legacy] remove outdated colo tensor (#4694) * [legacy] remove outdated colo tensor * [test] fix test import * [legacy] move outdated zero to legacy (#4696) * [legacy] clean up utils (#4700) * [legacy] clean up utils * [example] update examples * [legacy] clean up amp * [legacy] fix amp module * [legacy] clean up gpc (#4742) * [legacy] clean up context * [legacy] clean core, constants and global vars * [legacy] refactor initialize * [example] fix examples ci * [example] fix examples ci * [legacy] fix tests * [example] fix gpt example * [example] fix examples ci * [devops] fix ci installation * [example] fix examples ci
This commit is contained in:
168
colossalai/legacy/pipeline/pipeline_process_group.py
Normal file
168
colossalai/legacy/pipeline/pipeline_process_group.py
Normal file
@@ -0,0 +1,168 @@
|
||||
import os
|
||||
import threading
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import torch.distributed as dist
|
||||
from torch.distributed import rpc
|
||||
|
||||
from colossalai.legacy.tensor import ProcessGroup
|
||||
|
||||
|
||||
class PipelineProcessGroup:
|
||||
# TODO : flexible API for DP size and TP size
|
||||
# In the future design mode, dp_degree and tp_degree should be removed
|
||||
def __init__(self) -> None:
|
||||
self.is_initialize = False
|
||||
|
||||
def set_global_info(self,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
dp_degree: int = 1,
|
||||
tp_degree: int = 1,
|
||||
num_worker_threads: int = 1,
|
||||
device: str = "cuda") -> None:
|
||||
|
||||
device_mesh_size = dp_degree * tp_degree
|
||||
assert world_size % device_mesh_size == 0, "world_size must be the multiple of dp_degree * tp_degree !!!"
|
||||
self._num_worker_threads = num_worker_threads
|
||||
|
||||
self._device_mesh_size = device_mesh_size
|
||||
self._rank = rank
|
||||
self._world_size = world_size
|
||||
self._dp_degree = dp_degree
|
||||
self._tp_degree = tp_degree
|
||||
self.device = device
|
||||
self._stage_num = world_size // device_mesh_size
|
||||
self._pp_rank = rank // device_mesh_size
|
||||
self._pp_ranks = [(rank % device_mesh_size) + i * device_mesh_size for i in range(self._stage_num)]
|
||||
self._local_stage_ranks = [(rank // device_mesh_size * device_mesh_size) + i for i in range(device_mesh_size)]
|
||||
|
||||
# pp_ranks
|
||||
self._initialize_pp_process_group()
|
||||
|
||||
# initialise tp dp process groups
|
||||
self._initialize_tp_dp_process_group()
|
||||
|
||||
# status
|
||||
self._is_first_pp_rank = self._pp_rank == 0
|
||||
self._is_last_pp_rank = self._pp_rank == self._stage_num - 1
|
||||
|
||||
self.is_initialize = True
|
||||
|
||||
# lock
|
||||
self.initialise_lock = threading.Lock()
|
||||
self.chimera_lock = threading.Lock()
|
||||
|
||||
def _initialize_process_group(self):
|
||||
stage_num = self.get_stage_num()
|
||||
if stage_num == 1:
|
||||
return
|
||||
device = self.device
|
||||
world_size = self.get_world_size()
|
||||
rank = self.get_global_rank()
|
||||
backend = 'nccl' if device == 'cuda' else 'gloo'
|
||||
dist.init_process_group(backend, world_size=world_size, rank=rank, group_name='main_group')
|
||||
|
||||
def _initialize_pp_process_group(self) -> None:
|
||||
rank = self.get_global_rank()
|
||||
world_size = self.get_world_size()
|
||||
|
||||
# build rpc connection
|
||||
options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=self._num_worker_threads)
|
||||
|
||||
for pp_rank in self._pp_ranks:
|
||||
options.set_device_map(f'work{pp_rank}', {rank: pp_rank})
|
||||
|
||||
rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options)
|
||||
|
||||
def _initialize_tp_dp_process_group(self) -> None:
|
||||
rank = self.get_global_rank()
|
||||
local_stage_ranks = self.get_local_stage_global_ranks()
|
||||
dp_degree = self.get_dp_degree()
|
||||
tp_degree = self.get_tp_degree()
|
||||
self._tp_dp_process_group = ProcessGroup(rank, local_stage_ranks, tp_degree, dp_degree)
|
||||
|
||||
def get_global_rank(self):
|
||||
return self._rank
|
||||
|
||||
def get_world_size(self):
|
||||
return self._world_size
|
||||
|
||||
def get_dp_degree(self) -> int:
|
||||
return self._dp_degree
|
||||
|
||||
def get_tp_degree(self) -> int:
|
||||
return self._tp_degree
|
||||
|
||||
def get_local_device_mesh_size(self) -> int:
|
||||
return self._device_mesh_size
|
||||
|
||||
def get_device_mesh_num(self) -> int:
|
||||
pass
|
||||
|
||||
def get_stage_num(self) -> int:
|
||||
return self._stage_num
|
||||
|
||||
def is_first_stage(self) -> bool:
|
||||
return self._is_first_pp_rank
|
||||
|
||||
def is_last_stage(self) -> bool:
|
||||
return self._is_last_pp_rank
|
||||
|
||||
def check_pp_rank_valid(self, pp_rank: int) -> bool:
|
||||
return -1 < pp_rank < self._stage_num
|
||||
|
||||
def get_local_pp_rank(self) -> int:
|
||||
return self._pp_rank
|
||||
|
||||
def get_prev_pp_rank(self) -> int:
|
||||
prev_pp_rank = self._pp_rank - 1
|
||||
if not self.check_pp_rank_valid(prev_pp_rank):
|
||||
assert ValueError(f"current rank's pp_rank: {self._pp_rank} doesn't have a previous stage!")
|
||||
return prev_pp_rank
|
||||
|
||||
def get_next_pp_rank(self) -> int:
|
||||
next_pp_rank = self._pp_rank + 1
|
||||
if not self.check_pp_rank_valid(next_pp_rank):
|
||||
assert ValueError(f"current rank's pp_rank: {self._pp_rank} doesn't have a next stage!")
|
||||
return next_pp_rank
|
||||
|
||||
def get_local_stage_global_ranks(self) -> List[int]:
|
||||
return self._local_stage_ranks
|
||||
|
||||
def local_dp_rank(self) -> int:
|
||||
return self._tp_dp_process_group.dp_local_rank()
|
||||
|
||||
def local_tp_rank(self) -> int:
|
||||
return self._tp_dp_process_group.tp_local_rank()
|
||||
|
||||
def get_pp_global_ranks(self) -> int:
|
||||
return self._pp_ranks
|
||||
|
||||
def get_dp_global_ranks(self):
|
||||
pass
|
||||
|
||||
def get_tp_global_ranks(self):
|
||||
pass
|
||||
|
||||
def get_chimera_all_reduce_group(self, pp_rank: int):
|
||||
with self.chimera_lock:
|
||||
if not hasattr(self, 'chimera_groups'):
|
||||
world_size = self.get_world_size()
|
||||
stage_num = self.get_stage_num()
|
||||
assert world_size % 2 == 0, 'world_size must be even in chimera!'
|
||||
self.chimera_groups = {}
|
||||
for rank in range(world_size // 2):
|
||||
pair = [rank, world_size - 1 - rank]
|
||||
group = dist.new_group(pair)
|
||||
self.chimera_groups[pair[0]] = group
|
||||
self.chimera_groups[pair[1]] = group
|
||||
self.chimera_groups[pair[0] + stage_num] = group
|
||||
self.chimera_groups[pair[1] + stage_num] = group
|
||||
self.chimera_step_lock = threading.Lock()
|
||||
self.chimera_step_lock.acquire()
|
||||
|
||||
return self.chimera_groups[pp_rank]
|
||||
|
||||
|
||||
ppg = PipelineProcessGroup()
|
Reference in New Issue
Block a user