mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 13:00:52 +00:00
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692) * [legacy] remove cli of benchmark and update optim (#4690) * [legacy] remove cli of benchmark and update optim * [doc] fix cli doc test * [legacy] fix engine clip grad norm * [legacy] remove outdated colo tensor (#4694) * [legacy] remove outdated colo tensor * [test] fix test import * [legacy] move outdated zero to legacy (#4696) * [legacy] clean up utils (#4700) * [legacy] clean up utils * [example] update examples * [legacy] clean up amp * [legacy] fix amp module * [legacy] clean up gpc (#4742) * [legacy] clean up context * [legacy] clean core, constants and global vars * [legacy] refactor initialize * [example] fix examples ci * [example] fix examples ci * [legacy] fix tests * [example] fix gpt example * [example] fix examples ci * [devops] fix ci installation * [example] fix examples ci
This commit is contained in:
4
colossalai/legacy/pipeline/rpc/__init__.py
Normal file
4
colossalai/legacy/pipeline/rpc/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from ._pipeline_schedule import ChimeraPipelineEngine, FillDrainPipelineEngine, OneFOneBPipelineEngine
|
||||
from .utils import pytree_map
|
||||
|
||||
__all__ = ['FillDrainPipelineEngine', 'OneFOneBPipelineEngine', 'ChimeraPipelineEngine', 'pytree_map']
|
1309
colossalai/legacy/pipeline/rpc/_pipeline_base.py
Normal file
1309
colossalai/legacy/pipeline/rpc/_pipeline_base.py
Normal file
File diff suppressed because it is too large
Load Diff
346
colossalai/legacy/pipeline/rpc/_pipeline_schedule.py
Normal file
346
colossalai/legacy/pipeline/rpc/_pipeline_schedule.py
Normal file
@@ -0,0 +1,346 @@
|
||||
import threading
|
||||
from typing import Callable, Dict, List
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch._C._distributed_rpc import PyRRef
|
||||
from torch.futures import Future
|
||||
|
||||
from colossalai.legacy.pipeline.pipeline_process_group import ppg
|
||||
from colossalai.legacy.pipeline.rpc._pipeline_base import Phase, PipelineEngineBase, UniqueKey, WorkerBase, WorkItem
|
||||
|
||||
# Implementation of different Pipeline schedule
|
||||
# <strategy>Worker defines the worker for each stage
|
||||
# <strategy>PipelineEngine is the class for use
|
||||
|
||||
|
||||
class FillDrainWorker(WorkerBase):
|
||||
|
||||
def _get_work_item_key(self) -> UniqueKey:
|
||||
# execute backward first (if backward phase in work_list)
|
||||
num_microbatches = self.num_microbatches
|
||||
|
||||
if self.forward_times < num_microbatches:
|
||||
target_phase = Phase.FORWARD
|
||||
target_microbatch_id = self.forward_times
|
||||
else:
|
||||
target_phase = Phase.BACKWARD
|
||||
target_microbatch_id = self.backward_times
|
||||
|
||||
target_key = UniqueKey(target_microbatch_id, target_phase)
|
||||
|
||||
return target_key
|
||||
|
||||
|
||||
class FillDrainPipelineEngine(PipelineEngineBase):
|
||||
|
||||
def __init__(self,
|
||||
partition_fn: Callable,
|
||||
stage_num: int,
|
||||
num_microbatches: int,
|
||||
device: str,
|
||||
chunk: int = 1,
|
||||
criterion: Callable = None,
|
||||
metric: Callable = None,
|
||||
checkpoint: bool = False,
|
||||
data_process_func: Callable = None) -> None:
|
||||
|
||||
if chunk > 1:
|
||||
assert num_microbatches % stage_num == 0, \
|
||||
"if you use interleaving strategy, make sure 'num_microbatches' is a multiple of stage_num!"
|
||||
use_1F1B = False
|
||||
|
||||
super().__init__(FillDrainWorker, partition_fn, stage_num, num_microbatches, device, use_1F1B, chunk, criterion,
|
||||
metric, checkpoint, data_process_func)
|
||||
|
||||
|
||||
class OneFOneBWorker(WorkerBase):
|
||||
|
||||
def _get_work_item_key(self) -> UniqueKey:
|
||||
# execute backward first (if backward phase in work_list)
|
||||
pp_rank = self.pp_rank
|
||||
actual_stage_num = self.actual_stage_num
|
||||
num_microbatches = self.num_microbatches
|
||||
is_last_stage = pp_rank == actual_stage_num - 1
|
||||
|
||||
if self.outstanding <= self.outstanding_range[0]:
|
||||
target_phase = Phase.FORWARD
|
||||
target_microbatch_id = self.forward_times
|
||||
elif self.outstanding >= self.outstanding_range[1]:
|
||||
target_phase = Phase.BACKWARD
|
||||
target_microbatch_id = self.backward_times
|
||||
else:
|
||||
raise ValueError("outstanding_range[1] - outstanding_range[0] must be in [0, 1]")
|
||||
|
||||
target_key = UniqueKey(target_microbatch_id, target_phase)
|
||||
|
||||
# change outstanding_range at:
|
||||
# 1. forward times reach actual_stage_num, this is the end of continuous forward
|
||||
# 2. forward times reach num_microbatches, this is the end of 1F1B mode
|
||||
if not is_last_stage and \
|
||||
target_key.phase == Phase.FORWARD:
|
||||
if target_key.microbatch_id == actual_stage_num - 1 and num_microbatches > 2:
|
||||
# Why need num_microbatches > 2 ? Because there is no steady stage when num_microbatches <= 2
|
||||
outstanding_min = actual_stage_num - pp_rank - 1
|
||||
outstanding_max = actual_stage_num - pp_rank
|
||||
self.outstanding_range = (outstanding_min, outstanding_max)
|
||||
if target_key.microbatch_id == num_microbatches - 1:
|
||||
self.outstanding_range = (0, 0)
|
||||
|
||||
return target_key
|
||||
|
||||
|
||||
class OneFOneBPipelineEngine(PipelineEngineBase):
|
||||
|
||||
def __init__(self,
|
||||
partition_fn: Callable,
|
||||
stage_num: int,
|
||||
num_microbatches: int,
|
||||
device: str,
|
||||
chunk: int = 1,
|
||||
criterion: Callable = None,
|
||||
metric: Callable = None,
|
||||
checkpoint: bool = False,
|
||||
data_process_func: Callable = None) -> None:
|
||||
|
||||
if chunk > 1:
|
||||
assert num_microbatches % stage_num == 0, \
|
||||
"if you use interleaving strategy, make sure 'num_microbatches' is a multiple of stage_num!"
|
||||
# assert num_microbatches > stage_num * chunk, "num_microbatches must be greater than stage_num * chunk"
|
||||
use_1F1B = True
|
||||
|
||||
super().__init__(OneFOneBWorker, partition_fn, stage_num, num_microbatches, device, use_1F1B, chunk, criterion,
|
||||
metric, checkpoint, data_process_func)
|
||||
|
||||
|
||||
class ChimeraWorker(WorkerBase):
|
||||
|
||||
def _get_producer_consumer(self) -> None:
|
||||
rank = self.pp_rank
|
||||
min_pp_rank = (rank // self.actual_stage_num) * self.actual_stage_num
|
||||
max_pp_rank = min_pp_rank + self.actual_stage_num - 1
|
||||
|
||||
assert self.producer_stage_ids is None, f"all the producers of rank {rank} has been subscribed"
|
||||
assert self.consumer_stage_ids is None, f"all the consumers of rank {rank} has been subscribed"
|
||||
|
||||
# should be arranged in order, the order of the input of current forward
|
||||
self.producer_stage_ids = []
|
||||
self.consumer_stage_ids = []
|
||||
|
||||
# Just for demo
|
||||
prev_rank = rank - 1
|
||||
next_rank = rank + 1
|
||||
if prev_rank >= min_pp_rank:
|
||||
self.producer_stage_ids.append(prev_rank)
|
||||
if next_rank <= max_pp_rank:
|
||||
self.consumer_stage_ids.append(next_rank)
|
||||
|
||||
def _get_work_item_key(self) -> UniqueKey:
|
||||
pp_rank = self.pp_rank
|
||||
stage_num = self.actual_stage_num
|
||||
real_microbatch_num = self.num_microbatches // 2
|
||||
|
||||
forward_block_size = 1 if self.num_microbatches < stage_num else self.num_microbatches // stage_num
|
||||
forward_block_num = self.forward_times // forward_block_size
|
||||
|
||||
if self.forward_times >= real_microbatch_num or \
|
||||
((pp_rank + 1) % stage_num == 0 and forward_block_num > self.backward_times):
|
||||
target_phase = Phase.BACKWARD
|
||||
target_microbatch_id = self.backward_times
|
||||
else: # others
|
||||
target_phase = Phase.FORWARD
|
||||
target_microbatch_id = self.forward_times
|
||||
|
||||
# In up pipeline, microbatch_id to consume is 0, 2, 4 (2n)
|
||||
# In down pipeline, microbatch_id to consume is 1, 3, 5 (2n + 1)
|
||||
real_target_microbatch_id = target_microbatch_id * 2
|
||||
if pp_rank >= stage_num:
|
||||
real_target_microbatch_id += 1
|
||||
target_key = UniqueKey(real_target_microbatch_id, target_phase)
|
||||
|
||||
with self.work_list_condition_lock:
|
||||
self.work_list_condition_lock.wait_for(lambda: target_key in self.work_list)
|
||||
return target_key
|
||||
|
||||
def _initialize_partition(self):
|
||||
# In order to ensure the down pipeline share the same parameter
|
||||
# with the up pipeline, partition of down partition will be copied
|
||||
# from corresponding up stage
|
||||
pp_rank = self.pp_rank
|
||||
stage_num = self.actual_stage_num
|
||||
device = self.device
|
||||
if pp_rank < stage_num:
|
||||
super()._initialize_partition()
|
||||
else:
|
||||
# if it is down pipeline, create partition by origin method
|
||||
co_up_pp_worker_rref = self.pp_rank_to_worker_rref[pp_rank - stage_num]
|
||||
# get the corresponding model state dict and wait for its init
|
||||
state_dict = co_up_pp_worker_rref.rpc_sync().get_partition_state_dict()
|
||||
super()._initialize_partition()
|
||||
self.module_partition.load_state_dict(state_dict)
|
||||
|
||||
# init group for chimera in ppg
|
||||
ppg.get_chimera_all_reduce_group(pp_rank)
|
||||
|
||||
# lock for step sync
|
||||
self.step_sync_lock = threading.Lock()
|
||||
self.step_sync_lock.acquire()
|
||||
|
||||
self.have_grad_lock = threading.Lock()
|
||||
self.have_grad_lock.acquire()
|
||||
|
||||
def _get_lock_gradient(self):
|
||||
self.have_grad_lock.acquire()
|
||||
grads = self.get_parameter_gradients()
|
||||
self.step_sync_lock.release()
|
||||
return grads
|
||||
|
||||
def is_first_stage(self):
|
||||
return (self.pp_rank % self.actual_stage_num) == 0
|
||||
|
||||
def is_last_stage(self):
|
||||
return (self.pp_rank % self.actual_stage_num) == self.actual_stage_num - 1
|
||||
|
||||
def _is_last_step(self, work_item: WorkItem) -> bool:
|
||||
if work_item.forward_only:
|
||||
last_phase = Phase.FORWARD
|
||||
else:
|
||||
last_phase = Phase.BACKWARD
|
||||
is_last_phase = work_item.phase == last_phase
|
||||
last_microbatch_id = self.num_microbatches - 1
|
||||
if self.pp_rank < self.actual_stage_num:
|
||||
last_microbatch_id -= 1
|
||||
is_last_microbatch = work_item.microbatch_id == last_microbatch_id
|
||||
return is_last_phase and is_last_microbatch
|
||||
|
||||
def _get_step_order(self) -> List[int]:
|
||||
# TODO : If you want to extend it to multi head chimera, overwrite here
|
||||
stage_num = self.actual_stage_num
|
||||
pp_rank = self.pp_rank
|
||||
# pp_rank in the same device
|
||||
local_device_pp_ranks = [pp_rank, stage_num * 2 - pp_rank - 1]
|
||||
local_device_pp_ranks.sort(reverse=min(local_device_pp_ranks) < stage_num // 2)
|
||||
return local_device_pp_ranks
|
||||
|
||||
def _hook_before_step(self):
|
||||
self.have_grad_lock.release()
|
||||
pp_rank = self.pp_rank
|
||||
stage_num = self.actual_stage_num
|
||||
co_pp_rank = (pp_rank + stage_num) % (2 * stage_num)
|
||||
|
||||
# if current pp_rank is not the first to do step
|
||||
# wait its previous pp_rank finish step
|
||||
grads = self.get_parameter_gradients()
|
||||
|
||||
# send
|
||||
co_worker = self.pp_rank_to_worker_rref[co_pp_rank]
|
||||
co_grads = co_worker.rpc_sync()._get_lock_gradient()
|
||||
# sync
|
||||
self.step_sync_lock.acquire()
|
||||
for i in range(len(grads)):
|
||||
grads[i] += co_grads[i]
|
||||
|
||||
|
||||
class ChimeraPipelineEngine(PipelineEngineBase):
|
||||
|
||||
def __init__(self,
|
||||
partition_fn: Callable,
|
||||
stage_num: int,
|
||||
num_microbatches: int,
|
||||
device: str,
|
||||
criterion: Callable = None,
|
||||
metric: Callable = None,
|
||||
checkpoint: bool = False,
|
||||
data_process_func: Callable = None) -> None:
|
||||
|
||||
assert num_microbatches % stage_num == 0, \
|
||||
"In Chimera, num_microbatches must be the multiply of stage_num!"
|
||||
use_1F1B = False
|
||||
chunk = 1
|
||||
|
||||
super().__init__(ChimeraWorker, partition_fn, stage_num, num_microbatches, device, use_1F1B, chunk, criterion,
|
||||
metric, checkpoint, data_process_func)
|
||||
|
||||
def _consume_constraint(self, microbatch_id: int, forward_only: bool, input_pp_ranks: List[int],
|
||||
output_pp_ranks: List[int], ret_future):
|
||||
pass
|
||||
|
||||
def _create_pp_rank_to_rpc_worker_id(self) -> None:
|
||||
stage_num = self.stage_num
|
||||
self.pp_rank_to_rpc_worker_id = [0] * (stage_num * 2)
|
||||
for pp_rank in range(stage_num):
|
||||
self.pp_rank_to_rpc_worker_id[pp_rank] = pp_rank
|
||||
self.pp_rank_to_rpc_worker_id[pp_rank + stage_num] = stage_num - pp_rank - 1
|
||||
|
||||
def _create_pp_rank_to_module_partition_id(self) -> None:
|
||||
stage_num = self.stage_num
|
||||
self.pp_rank_to_module_partition_id = [0] * (stage_num * 2)
|
||||
for pp_rank in range(stage_num):
|
||||
self.pp_rank_to_module_partition_id[pp_rank] = pp_rank
|
||||
self.pp_rank_to_module_partition_id[pp_rank + stage_num] = pp_rank
|
||||
|
||||
def _create_ret_future(self, output_pp_ranks: List[int]) -> Dict[int, List[Future]]:
|
||||
num_microbatches = self.num_microbatches
|
||||
stage_num = self.stage_num
|
||||
up_ret_future = {pp_rank: [None] * num_microbatches for pp_rank in output_pp_ranks}
|
||||
down_ret_future = {pp_rank + stage_num: [None] * num_microbatches for pp_rank in output_pp_ranks}
|
||||
# merge up and down
|
||||
return {**up_ret_future, **down_ret_future}
|
||||
|
||||
def _set_input(self, input_pp_ranks: List[int], microbatch_id: int, microbatch, forward_only: bool):
|
||||
# offset is 0 for all the ranks in up pipeline
|
||||
# offset is stage_num for all the ranks in down pipeline
|
||||
offset = (microbatch_id % 2) * self.stage_num
|
||||
for pp_rank in input_pp_ranks:
|
||||
worker_rref = self.pp_rank_to_worker_rref[pp_rank + offset]
|
||||
worker_rref.remote().set_input(microbatch_id, microbatch, forward_only)
|
||||
|
||||
def _set_labels(self, output_pp_ranks: List[int], microbatch_id: int, microlabels):
|
||||
# offset is 0 for all the ranks in up pipeline
|
||||
# offset is stage_num for all the ranks in down pipeline
|
||||
offset = (microbatch_id % 2) * self.stage_num
|
||||
for pp_rank in output_pp_ranks:
|
||||
worker_rref = self.pp_rank_to_worker_rref[pp_rank + offset]
|
||||
worker_rref.remote().set_labels(microbatch_id, microlabels)
|
||||
|
||||
def _subscribe_forward(self, microbatch_id: int, output_pp_ranks: List[int], ret_future: Dict[int, List[Future]]):
|
||||
key = UniqueKey(microbatch_id, Phase.FORWARD)
|
||||
offset = (microbatch_id % 2) * self.stage_num
|
||||
for pp_rank in output_pp_ranks:
|
||||
worker_rref = self.pp_rank_to_worker_rref[pp_rank + offset]
|
||||
ret_future[pp_rank + offset][microbatch_id] = worker_rref.rpc_async().get_output_by_key(key)
|
||||
|
||||
def _ensure_backward(self, forward_only: bool, input_pp_ranks: List[int]):
|
||||
stage_num = self.stage_num
|
||||
num_microbatches = self.num_microbatches
|
||||
if not forward_only:
|
||||
for pp_rank in input_pp_ranks:
|
||||
up_last_microbatch_id = num_microbatches - 2
|
||||
down_last_microbatch_id = num_microbatches - 1
|
||||
|
||||
up_worker_rref = self.pp_rank_to_worker_rref[pp_rank]
|
||||
down_worker_rref = self.pp_rank_to_worker_rref[pp_rank + stage_num]
|
||||
|
||||
up_key = UniqueKey(up_last_microbatch_id, Phase.BACKWARD)
|
||||
down_key = UniqueKey(down_last_microbatch_id, Phase.BACKWARD)
|
||||
up_worker_rref.rpc_sync().get_output_by_key(up_key)
|
||||
down_worker_rref.rpc_sync().get_output_by_key(down_key)
|
||||
|
||||
def _collect_forward_result(self, output_pp_ranks: List[int], ret_future: Dict[PyRRef, List[Future]]):
|
||||
"""Logic of collection of forward in Chimera.
|
||||
Currently, only one input one output model is supported
|
||||
"""
|
||||
stage_num = self.stage_num
|
||||
forward_result = []
|
||||
for pp_rank in output_pp_ranks:
|
||||
worker_forward_result = [None] * self.num_microbatches
|
||||
for microbatch_id in range(self.num_microbatches):
|
||||
offset = (microbatch_id % 2) * stage_num
|
||||
ret = ret_future[pp_rank + offset][microbatch_id].wait()
|
||||
ret = [ret] if isinstance(ret, torch.Tensor) else ret
|
||||
worker_forward_result[microbatch_id] = ret
|
||||
|
||||
worker_forward_result = list(zip(*worker_forward_result))
|
||||
forward_result.extend(worker_forward_result)
|
||||
|
||||
return forward_result
|
155
colossalai/legacy/pipeline/rpc/utils.py
Normal file
155
colossalai/legacy/pipeline/rpc/utils.py
Normal file
@@ -0,0 +1,155 @@
|
||||
import argparse
|
||||
import os
|
||||
import warnings
|
||||
from typing import Any, Callable, Dict, List, Tuple, Type, Union
|
||||
|
||||
import torch
|
||||
import torch.distributed.rpc as rpc
|
||||
import torch.multiprocessing as mp
|
||||
from torch._C._distributed_rpc import _is_current_rpc_agent_set
|
||||
from torch.futures import Future
|
||||
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.legacy.pipeline.pipeline_process_group import ppg
|
||||
|
||||
|
||||
def pyobj_map(obj: Any, fn: Callable, process_types: Union[Type, Tuple[Type]] = ()) -> Any:
|
||||
if isinstance(obj, process_types):
|
||||
return fn(obj)
|
||||
elif type(obj) is dict:
|
||||
return {k: pyobj_map(obj[k], fn, process_types) for k in obj}
|
||||
elif type(obj) is tuple:
|
||||
return tuple(pyobj_map(o, fn, process_types) for o in obj)
|
||||
elif type(obj) is list:
|
||||
return list(pyobj_map(o, fn, process_types) for o in obj)
|
||||
else:
|
||||
return obj
|
||||
|
||||
|
||||
def pytree_map(obj: Any, fn: Callable, process_types: Union[Type, Tuple[Type]] = (), map_all: bool = False) -> Any:
|
||||
"""process object recursively, like pytree
|
||||
|
||||
Args:
|
||||
obj (:class:`Any`): object to process
|
||||
fn (:class:`Callable`): a function to process subobject in obj
|
||||
process_types (:class: `type | tuple[type]`): types to determine the type to process
|
||||
map_all (:class: `bool`): if map_all is True, then any type of element will use fn
|
||||
|
||||
Returns:
|
||||
:class:`Any`: returns have the same structure of `obj` and type in process_types after map of `fn`
|
||||
"""
|
||||
if isinstance(obj, dict):
|
||||
return {k: pytree_map(obj[k], fn, process_types, map_all) for k in obj}
|
||||
elif isinstance(obj, tuple):
|
||||
return tuple(pytree_map(o, fn, process_types, map_all) for o in obj)
|
||||
elif isinstance(obj, list):
|
||||
return list(pytree_map(o, fn, process_types, map_all) for o in obj)
|
||||
elif isinstance(obj, process_types):
|
||||
return fn(obj)
|
||||
else:
|
||||
return fn(obj) if map_all else obj
|
||||
|
||||
|
||||
def tensor_shape_list(obj):
|
||||
return pytree_map(obj, fn=lambda x: x.shape, process_types=torch.Tensor)
|
||||
|
||||
|
||||
def get_batch_lengths(batch):
|
||||
lengths = []
|
||||
pytree_map(batch, fn=lambda x: lengths.append(len(x)), process_types=torch.Tensor)
|
||||
return lengths
|
||||
|
||||
|
||||
def split_batch(batch: Any, start, stop, device: str):
|
||||
if device == 'cuda':
|
||||
fn = lambda x: x[start:stop].cuda()
|
||||
else:
|
||||
fn = lambda x: x[start:stop]
|
||||
return pytree_map(batch, fn=fn, process_types=torch.Tensor)
|
||||
|
||||
|
||||
def type_detail(obj):
|
||||
return pytree_map(obj, lambda x: type(x), map_all=True)
|
||||
|
||||
|
||||
def pytree_filter(fn, obj, process_types):
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
filters = []
|
||||
|
||||
def condition_append(obj):
|
||||
if fn(obj):
|
||||
filters.append(obj)
|
||||
|
||||
pytree_map(obj, fn=condition_append, process_types=process_types)
|
||||
return filters
|
||||
|
||||
|
||||
def get_real_args_kwargs(args_or_kwargs):
|
||||
args_or_kwargs = pytree_map(args_or_kwargs, fn=lambda x: x.wait(), process_types=Future)
|
||||
# TODO : combine producer and consumer
|
||||
# by default, merge all args in the output args or kwargs
|
||||
if args_or_kwargs is not None:
|
||||
if isinstance(args_or_kwargs, dict):
|
||||
pass
|
||||
else:
|
||||
flatten_args = []
|
||||
pytree_map(args_or_kwargs, fn=lambda x: flatten_args.append(x), map_all=True)
|
||||
args_or_kwargs = flatten_args
|
||||
|
||||
return args_or_kwargs
|
||||
|
||||
|
||||
def run_worker(rank, args, master_func):
|
||||
os.environ['MASTER_ADDR'] = args.master_addr
|
||||
os.environ['MASTER_PORT'] = args.master_port
|
||||
|
||||
device = args.device
|
||||
world_size = args.world_size
|
||||
dp_degree = args.dp_degree
|
||||
tp_degree = args.tp_degree
|
||||
num_worker_threads = args.num_worker_threads
|
||||
host = args.master_addr
|
||||
port = args.master_port
|
||||
backend = 'nccl' if device == 'cuda' else 'gloo'
|
||||
|
||||
launch(dict(), rank, world_size, host, int(port), backend, verbose=False)
|
||||
ppg.set_global_info(rank=rank,
|
||||
world_size=world_size,
|
||||
dp_degree=dp_degree,
|
||||
tp_degree=tp_degree,
|
||||
num_worker_threads=num_worker_threads,
|
||||
device=device)
|
||||
ppg.args = args
|
||||
# in rpc mode, only rank 0 is needed to be coded
|
||||
if rank == 0:
|
||||
master_func(args)
|
||||
# barrier here
|
||||
if _is_current_rpc_agent_set():
|
||||
rpc.shutdown()
|
||||
else:
|
||||
warnings.warn("RPC has not been initialized")
|
||||
|
||||
|
||||
def rpc_run(args, master_func):
|
||||
world_size = args.world_size
|
||||
mp.spawn(run_worker, args=(args, master_func), nprocs=world_size)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--epoch', type=int, default=1)
|
||||
parser.add_argument('--world_size', type=int, default=2)
|
||||
parser.add_argument('--batch_size', type=int, default=16)
|
||||
parser.add_argument('--dp_degree', type=int, default=1)
|
||||
parser.add_argument('--tp_degree', type=int, default=1)
|
||||
parser.add_argument('--num_microbatches', type=int, default=2)
|
||||
parser.add_argument('--chunk', type=int, default=1)
|
||||
parser.add_argument('--use_checkpoint', action='store_true')
|
||||
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'RMSprop'], default='SGD')
|
||||
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
|
||||
parser.add_argument('--master_addr', type=str, default='localhost')
|
||||
parser.add_argument('--master_port', type=str, default='29020')
|
||||
parser.add_argument('--num_worker_threads', type=int, default=128)
|
||||
return parser.parse_args()
|
Reference in New Issue
Block a user