[legacy] clean up legacy code (#4743)

* [legacy] remove outdated codes of pipeline (#4692)

* [legacy] remove cli of benchmark and update optim (#4690)

* [legacy] remove cli of benchmark and update optim

* [doc] fix cli doc test

* [legacy] fix engine clip grad norm

* [legacy] remove outdated colo tensor (#4694)

* [legacy] remove outdated colo tensor

* [test] fix test import

* [legacy] move outdated zero to legacy (#4696)

* [legacy] clean up utils (#4700)

* [legacy] clean up utils

* [example] update examples

* [legacy] clean up amp

* [legacy] fix amp module

* [legacy] clean up gpc (#4742)

* [legacy] clean up context

* [legacy] clean core, constants and global vars

* [legacy] refactor initialize

* [example] fix examples ci

* [example] fix examples ci

* [legacy] fix tests

* [example] fix gpt example

* [example] fix examples ci

* [devops] fix ci installation

* [example] fix examples ci
This commit is contained in:
Hongxin Liu
2023-09-18 16:31:06 +08:00
committed by GitHub
parent 32e7f99416
commit b5f9e37c70
342 changed files with 2919 additions and 4182 deletions

View File

@@ -0,0 +1,3 @@
from ._param_hookmgr import BaseParamHookMgr
__all__ = ["BaseParamHookMgr"]

View File

@@ -0,0 +1,39 @@
import functools
from typing import Callable, List
import torch
class BaseParamHookMgr(object):
def __init__(self, param_list: List[torch.nn.Parameter]) -> None:
r"""
register backward hook on every parameters of module
"""
self._param_list = param_list
self._hook_list = []
def register_backward_hooks(self, hook_call: Callable) -> None:
r"""
The hook_call will be called every time a gradient with respect to the a param in self.param_list
is computed.
The hook should have the following signature:
```
hook(param, grad) -> Tensor or None
```
"""
if not torch.is_grad_enabled():
return # don't register grad hooks if grad isn't enabled
for p in self._param_list:
if p.requires_grad and not hasattr(p, '_base_param_hook'):
handle = p.register_hook(functools.partial(hook_call, p))
p._base_param_hook = handle
def remove_hooks(self) -> None:
"""
Remove hooks from model parameters.
"""
for p in self._param_list:
if p.requires_grad and hasattr(p, '_base_param_hook'):
p._base_param_hook.remove()