[legacy] clean up legacy code (#4743)

* [legacy] remove outdated codes of pipeline (#4692)

* [legacy] remove cli of benchmark and update optim (#4690)

* [legacy] remove cli of benchmark and update optim

* [doc] fix cli doc test

* [legacy] fix engine clip grad norm

* [legacy] remove outdated colo tensor (#4694)

* [legacy] remove outdated colo tensor

* [test] fix test import

* [legacy] move outdated zero to legacy (#4696)

* [legacy] clean up utils (#4700)

* [legacy] clean up utils

* [example] update examples

* [legacy] clean up amp

* [legacy] fix amp module

* [legacy] clean up gpc (#4742)

* [legacy] clean up context

* [legacy] clean core, constants and global vars

* [legacy] refactor initialize

* [example] fix examples ci

* [example] fix examples ci

* [legacy] fix tests

* [example] fix gpt example

* [example] fix examples ci

* [devops] fix ci installation

* [example] fix examples ci
This commit is contained in:
Hongxin Liu
2023-09-18 16:31:06 +08:00
committed by GitHub
parent 32e7f99416
commit b5f9e37c70
342 changed files with 2919 additions and 4182 deletions

View File

@@ -0,0 +1,5 @@
from .base_shard_strategy import BaseShardStrategy
from .bucket_tensor_shard_strategy import BucketTensorShardStrategy
from .tensor_shard_strategy import TensorShardStrategy
__all__ = ['BaseShardStrategy', 'TensorShardStrategy', 'BucketTensorShardStrategy']

View File

@@ -0,0 +1,22 @@
from abc import ABC, abstractmethod
from typing import List, Optional
import torch.distributed as dist
from colossalai.legacy.zero.sharded_param.sharded_tensor import ShardedTensor
class BaseShardStrategy(ABC):
def __init__(self) -> None:
"""Abstract Shard Strategy. Use to shard a tensors on multiple GPUs.
"""
super().__init__()
@abstractmethod
def shard(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
pass
@abstractmethod
def gather(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
pass

View File

@@ -0,0 +1,47 @@
from typing import List, Optional
import torch
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors as flatten
from colossalai.legacy.zero.sharded_param.sharded_tensor import ShardedTensor
from colossalai.utils import get_current_device
from .tensor_shard_strategy import TensorShardStrategy
class BucketTensorShardStrategy(TensorShardStrategy):
"""Use the same shard scheme as `TensorShardStrategy`'s, but it gathers tensors of a sub-module together,
which will fully utilize network bandwidth.
It is especially useful when sub-module contains bias,
since we cannot utilize network bandwidth well if we only gather a bias tensor (bias is usually small).
"""
def gather(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
tensor_list: List[ShardedTensor] = [t for t in tensor_list if t.is_sharded]
if len(tensor_list) == 0:
return
target_device = tensor_list[0].device
dtype = tensor_list[0].dtype
buffer_list: List[torch.Tensor] = []
tensor_numels = [t.payload.numel() for t in tensor_list]
buffer_size = sum(tensor_numels)
world_size = dist.get_world_size(process_group)
rank = dist.get_rank(process_group)
for i in range(world_size):
if i == rank:
buffer_list.append(flatten([t.payload for t in tensor_list]).cuda(get_current_device()))
else:
buffer_list.append(torch.zeros(buffer_size, dtype=dtype, device=get_current_device()))
dist.all_gather(buffer_list, buffer_list[rank], group=process_group)
# Move to target device before splitting buffer
# Ensure we utilize maximum PCIE bandwidth
buffer_list = [buffer.to(target_device) for buffer in buffer_list]
offset = 0
for i, t in enumerate(tensor_list):
gathered_payload = [buffer[offset:offset + tensor_numels[i]] for buffer in buffer_list]
gathered_payload = torch.cat(gathered_payload)[:t.origin_numel].view(t.origin_shape)
t.payload_reset(gathered_payload)
t.is_sharded = False
offset += tensor_numels[i]

View File

@@ -0,0 +1,22 @@
from typing import Tuple
import torch
def get_shard(tensor: torch.Tensor, rank: int, world_size: int) -> Tuple[torch.Tensor, int]:
"""Return the local shard of a full tensor."""
# Shard using torch.chunk to match all-gather/reduce-scatter.
chunks = list(torch.flatten(tensor).chunk(world_size))
while len(chunks) < world_size:
chunks.append(chunks[0].new_empty(0))
# Determine number of padding elements.
num_to_pad = chunks[0].numel() - chunks[rank].numel()
assert num_to_pad >= 0, num_to_pad
shard = torch.zeros_like(chunks[0])
length = chunks[rank].size(0)
shard_temp = shard[:length]
shard_temp.copy_(chunks[rank])
return shard, num_to_pad

View File

@@ -0,0 +1,59 @@
from typing import List, Optional
import torch
import torch.distributed as dist
from colossalai.legacy.zero.gemini.tensor_utils import colo_model_data_tensor_move_inline
from colossalai.legacy.zero.shard_utils import BaseShardStrategy
from colossalai.legacy.zero.shard_utils.commons import get_shard
from colossalai.legacy.zero.sharded_param.sharded_tensor import ShardedTensor
from colossalai.utils import get_current_device
class TensorShardStrategy(BaseShardStrategy):
"""
A naive implementation which shard each tensor evenly over all ranks
"""
def shard(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
for t in tensor_list:
self._shard_tensor(t, process_group)
def gather(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
for t in tensor_list:
self._gather_tensor(t, process_group)
def _shard_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None):
""" Shard tensor among processes.
Args:
t (ShardedTensor): a tensor to be sharded.
process_group (Optional[dist.ProcessGroup], optional): the process group among which tensor shards.
Defaults to None.
"""
if t.is_sharded:
return
if t.payload.device.type == 'cuda':
assert t.payload.device == get_current_device(), f"shard tensor on cuda device index {t.payload.device.index},"\
f" but current cuda device is {get_current_device()}"
sharded_payload, _ = get_shard(t.payload, dist.get_rank(process_group), dist.get_world_size(process_group))
t.payload_reset(sharded_payload)
t.is_sharded = True
def _gather_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None):
if not t.is_sharded:
return
target_device = t.device
payload_numel = t.payload.numel()
world_size = dist.get_world_size(process_group)
rank = dist.get_rank(process_group)
buffer = torch.empty(payload_numel * world_size, dtype=t.payload.dtype, device=get_current_device())
buffer_list = list(torch.chunk(buffer, chunks=world_size, dim=0))
buffer_list[rank].copy_(t.payload)
dist.all_gather(buffer_list, buffer_list[rank], group=process_group, async_op=False)
gathered_payload = torch.narrow(buffer, 0, 0, t.origin_numel).reshape(t.origin_shape)
t.payload_reset(gathered_payload)
colo_model_data_tensor_move_inline(t, target_device)
t.is_sharded = False