mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-28 13:05:26 +00:00
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692) * [legacy] remove cli of benchmark and update optim (#4690) * [legacy] remove cli of benchmark and update optim * [doc] fix cli doc test * [legacy] fix engine clip grad norm * [legacy] remove outdated colo tensor (#4694) * [legacy] remove outdated colo tensor * [test] fix test import * [legacy] move outdated zero to legacy (#4696) * [legacy] clean up utils (#4700) * [legacy] clean up utils * [example] update examples * [legacy] clean up amp * [legacy] fix amp module * [legacy] clean up gpc (#4742) * [legacy] clean up context * [legacy] clean core, constants and global vars * [legacy] refactor initialize * [example] fix examples ci * [example] fix examples ci * [legacy] fix tests * [example] fix gpt example * [example] fix examples ci * [devops] fix ci installation * [example] fix examples ci
This commit is contained in:
59
colossalai/legacy/zero/shard_utils/tensor_shard_strategy.py
Normal file
59
colossalai/legacy/zero/shard_utils/tensor_shard_strategy.py
Normal file
@@ -0,0 +1,59 @@
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.legacy.zero.gemini.tensor_utils import colo_model_data_tensor_move_inline
|
||||
from colossalai.legacy.zero.shard_utils import BaseShardStrategy
|
||||
from colossalai.legacy.zero.shard_utils.commons import get_shard
|
||||
from colossalai.legacy.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
||||
class TensorShardStrategy(BaseShardStrategy):
|
||||
"""
|
||||
A naive implementation which shard each tensor evenly over all ranks
|
||||
"""
|
||||
|
||||
def shard(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
|
||||
for t in tensor_list:
|
||||
self._shard_tensor(t, process_group)
|
||||
|
||||
def gather(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
|
||||
for t in tensor_list:
|
||||
self._gather_tensor(t, process_group)
|
||||
|
||||
def _shard_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None):
|
||||
""" Shard tensor among processes.
|
||||
|
||||
Args:
|
||||
t (ShardedTensor): a tensor to be sharded.
|
||||
process_group (Optional[dist.ProcessGroup], optional): the process group among which tensor shards.
|
||||
Defaults to None.
|
||||
"""
|
||||
if t.is_sharded:
|
||||
return
|
||||
if t.payload.device.type == 'cuda':
|
||||
assert t.payload.device == get_current_device(), f"shard tensor on cuda device index {t.payload.device.index},"\
|
||||
f" but current cuda device is {get_current_device()}"
|
||||
sharded_payload, _ = get_shard(t.payload, dist.get_rank(process_group), dist.get_world_size(process_group))
|
||||
t.payload_reset(sharded_payload)
|
||||
t.is_sharded = True
|
||||
|
||||
def _gather_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None):
|
||||
if not t.is_sharded:
|
||||
return
|
||||
target_device = t.device
|
||||
payload_numel = t.payload.numel()
|
||||
world_size = dist.get_world_size(process_group)
|
||||
rank = dist.get_rank(process_group)
|
||||
|
||||
buffer = torch.empty(payload_numel * world_size, dtype=t.payload.dtype, device=get_current_device())
|
||||
buffer_list = list(torch.chunk(buffer, chunks=world_size, dim=0))
|
||||
buffer_list[rank].copy_(t.payload)
|
||||
|
||||
dist.all_gather(buffer_list, buffer_list[rank], group=process_group, async_op=False)
|
||||
gathered_payload = torch.narrow(buffer, 0, 0, t.origin_numel).reshape(t.origin_shape)
|
||||
t.payload_reset(gathered_payload)
|
||||
colo_model_data_tensor_move_inline(t, target_device)
|
||||
t.is_sharded = False
|
Reference in New Issue
Block a user