mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 17:46:42 +00:00
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692) * [legacy] remove cli of benchmark and update optim (#4690) * [legacy] remove cli of benchmark and update optim * [doc] fix cli doc test * [legacy] fix engine clip grad norm * [legacy] remove outdated colo tensor (#4694) * [legacy] remove outdated colo tensor * [test] fix test import * [legacy] move outdated zero to legacy (#4696) * [legacy] clean up utils (#4700) * [legacy] clean up utils * [example] update examples * [legacy] clean up amp * [legacy] fix amp module * [legacy] clean up gpc (#4742) * [legacy] clean up context * [legacy] clean core, constants and global vars * [legacy] refactor initialize * [example] fix examples ci * [example] fix examples ci * [legacy] fix tests * [example] fix gpt example * [example] fix examples ci * [devops] fix ci installation * [example] fix examples ci
This commit is contained in:
399
colossalai/legacy/zero/sharded_optim/sharded_optim_v2.py
Normal file
399
colossalai/legacy/zero/sharded_optim/sharded_optim_v2.py
Normal file
@@ -0,0 +1,399 @@
|
||||
# this code is inspired by the DeepSpeed library and implemented with our own design from scratch
|
||||
from enum import Enum
|
||||
from os import stat
|
||||
from typing import Dict, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.distributed import ProcessGroup
|
||||
from torch.nn.parameter import Parameter
|
||||
from torch.optim import Optimizer
|
||||
|
||||
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
|
||||
from colossalai.interface import OptimizerWrapper
|
||||
from colossalai.legacy.context.parallel_mode import ParallelMode
|
||||
from colossalai.legacy.core import global_context as gpc
|
||||
from colossalai.legacy.zero.gemini.stateful_tensor import StatefulTensor, TensorState
|
||||
from colossalai.legacy.zero.gemini.tensor_placement_policy import AutoTensorPlacementPolicy
|
||||
from colossalai.legacy.zero.gemini.tensor_utils import colo_model_data_tensor_move_inline, colo_tensor_mem_usage
|
||||
from colossalai.legacy.zero.sharded_model import ShardedModelV2
|
||||
from colossalai.legacy.zero.sharded_model._utils import cast_tensor_to_fp32
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
||||
|
||||
class OptimState(Enum):
|
||||
SCALED = 1
|
||||
UNSCALED = 2
|
||||
|
||||
|
||||
class ShardedOptimizerV2(OptimizerWrapper):
|
||||
"""A wrapper for optimizer. ``ShardedOptimizerV2`` and ``ShardedModelV2`` implement Zero Redundancy Optimizer (ZeRO).
|
||||
|
||||
By default the ZeRO optimizer stage 3 offload Optimizer States on CPU.
|
||||
|
||||
We apply the Device-aware Operator Placement technique for OS placement from the following paper.
|
||||
|
||||
`PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management`_
|
||||
|
||||
GPU margin space is the remaining space after removing peak non-model data from the overall GPU memory,
|
||||
which is detected by a runtime memory tracer.
|
||||
|
||||
We place as many OS chunks in the margin space as possible.
|
||||
|
||||
The size of margin space can be controlled by ``gpu_margin_mem_ratio``.
|
||||
If it is set as ``0.0``, it is the same as classical ZeRO optimizer.
|
||||
|
||||
Note:
|
||||
You must use ``ShardedOptimizerV2`` with ``ShardedModelV2``.
|
||||
|
||||
Note:
|
||||
Make sure you set ``tensor_placement_policy`` in ``ShardedModelV2`` to `"auto"`,
|
||||
if you set ``gpu_margin_mem_ratio > 0``.
|
||||
|
||||
Args:
|
||||
sharded_model (ShardedModelV2): A sharded model initialized by class ShardedModelV2. The optimizer will use the
|
||||
shard strategy provided by sharded model to shard param fp32 tensors.
|
||||
optimizer (Optimizer): An Optimizer instance.
|
||||
gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward)
|
||||
which will be used when using hybrid CPU optimizer.
|
||||
This argument is meaningless when `tensor_placement_policy` of `ShardedModelV2` is not "auto".
|
||||
Defaults to 0.0.
|
||||
initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**32.
|
||||
min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1.
|
||||
growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2.
|
||||
backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5.
|
||||
growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000.
|
||||
hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2.
|
||||
max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32.
|
||||
dp_process_group (Optional[ProcessGroup], optional): data parallel process group. Defaults to None.
|
||||
mp_process_group (Optional[ProcessGroup], optional): model parallel process group. Defaults to None.
|
||||
|
||||
.. _PatrickStar\: Parallel Training of Pre-trained Models via Chunk-based Memory Management:
|
||||
https://arxiv.org/abs/2108.05818
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
sharded_model: ShardedModelV2,
|
||||
optimizer: Optimizer,
|
||||
gpu_margin_mem_ratio: float = 0.0,
|
||||
initial_scale: float = 2**32,
|
||||
min_scale: float = 1,
|
||||
growth_factor: float = 2,
|
||||
backoff_factor: float = 0.5,
|
||||
growth_interval: int = 1000,
|
||||
hysteresis: int = 2,
|
||||
max_scale: float = 2**32,
|
||||
dp_process_group: Optional[ProcessGroup] = None,
|
||||
mp_process_group: Optional[ProcessGroup] = None,
|
||||
verbose: bool = False) -> None:
|
||||
assert isinstance(sharded_model, ShardedModelV2), 'model must be wrapped with ShardedModel'
|
||||
assert not isinstance(optimizer, ShardedOptimizerV2), 'Nested ShardedOptimizerV2 is not supported.'
|
||||
|
||||
super().__init__(optimizer)
|
||||
self.shard_strategy = sharded_model.shard_strategy
|
||||
self.model: ShardedModelV2 = sharded_model
|
||||
self.bf16 = sharded_model.bf16
|
||||
|
||||
self.gpu_margin_mem_ratio: float = float(gpu_margin_mem_ratio)
|
||||
assert 0.0 <= self.gpu_margin_mem_ratio <= 1.0, f'gpu_margin_mem_ratio must >=0.0 and <=1.0'
|
||||
# Only move fp32 shards from CPU to GPU when user allows and inner optimizer is valid
|
||||
# Inner optimizer must support optimizing hybrid (CPU and CUDA) tensors,
|
||||
# and it must set `num_fp32_shards_per_param` correctly
|
||||
self._should_move_fp32_shards_h2d: bool = sharded_model.cpu_offload and self.gpu_margin_mem_ratio > 0.0 and getattr(
|
||||
optimizer, 'num_fp32_shards_per_param', 0) >= 2
|
||||
self.device = sharded_model._tensor_placement_policy.device or torch.device('cpu')
|
||||
self.optim_state: OptimState = OptimState.UNSCALED
|
||||
self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA)
|
||||
self.mp_process_group = mp_process_group or gpc.get_group(ParallelMode.MODEL)
|
||||
# Grad scaler
|
||||
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
|
||||
min_scale=min_scale,
|
||||
growth_factor=growth_factor,
|
||||
backoff_factor=backoff_factor,
|
||||
growth_interval=growth_interval,
|
||||
hysteresis=hysteresis,
|
||||
max_scale=max_scale)
|
||||
self._found_overflow: Tensor = torch.IntTensor([0]).to(torch.cuda.current_device())
|
||||
self._logger = get_dist_logger("ShardedOptimizerV2")
|
||||
self._verbose = verbose
|
||||
self._grad_prepared: bool = False # this should be set to true when _prepare_grads() and reset to false when backward
|
||||
|
||||
# Store fp32 param shards
|
||||
self._register_master_weight()
|
||||
if self.gpu_margin_mem_ratio != 0.0 and not isinstance(sharded_model._tensor_placement_policy,
|
||||
AutoTensorPlacementPolicy):
|
||||
self._logger.warning(f'gpu_margin_mem_ratio is meaningless when tensor_placement_policy is not "auto"',
|
||||
ranks=[0])
|
||||
|
||||
if self._verbose:
|
||||
self._logger.debug(
|
||||
f"After init ShardedOptimizerV2 consumes {self.get_memory_usage()[0] / 1e6} MB CUDA Memory!", ranks=[0])
|
||||
|
||||
self._use_memory_tracer = self.model.use_memory_tracer
|
||||
|
||||
@property
|
||||
def loss_scale(self):
|
||||
return self.grad_scaler.scale.item()
|
||||
|
||||
def get_memory_usage(self) -> Tuple[int, int]:
|
||||
""" Get the memory usage of the optimizer. Including master_params (param fp32),
|
||||
momentum (``self.state[p]['exp_avg']``) variance (``self.state[p]['exp_avg_sq']``)
|
||||
|
||||
Returns:
|
||||
Tuple[int, int]: cuda/cpu memory usage in Byte.
|
||||
"""
|
||||
cuda_use = 0
|
||||
cpu_use = 0
|
||||
|
||||
def update_mem_use(t):
|
||||
nonlocal cuda_use
|
||||
nonlocal cpu_use
|
||||
t_cuda_use, t_cpu_use = colo_tensor_mem_usage(t)
|
||||
cuda_use += t_cuda_use
|
||||
cpu_use += t_cpu_use
|
||||
|
||||
for _, p_fp32 in self.master_params.items():
|
||||
update_mem_use(p_fp32)
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
state = self.optim.state[p]
|
||||
for k, v in state.items():
|
||||
update_mem_use(v)
|
||||
|
||||
return cuda_use, cpu_use
|
||||
|
||||
def zero_grad(self, *args, **kwargs):
|
||||
self._zero_grad()
|
||||
|
||||
def backward(self, loss: Tensor) -> None:
|
||||
if not self.bf16:
|
||||
loss = self.loss_scale * loss
|
||||
self.optim_state = OptimState.SCALED
|
||||
self._grad_prepared = False
|
||||
self.model.backward(loss)
|
||||
|
||||
def backward_by_grad(self, tensor: Tensor, grad: Tensor) -> None:
|
||||
# This function is called except the last stage of pipeline parallel
|
||||
# It receives the scaled grad from the previous rank
|
||||
# No need to scale the grad again
|
||||
# Need to unscale when optimizing
|
||||
if not self.bf16:
|
||||
self.optim_state = OptimState.SCALED
|
||||
self._grad_prepared = False
|
||||
self.model.backward_by_grad(tensor, grad)
|
||||
|
||||
def clip_grad_norm(self, model: nn.Module, max_norm: float):
|
||||
self._prepare_grads()
|
||||
if not self.bf16 and self.optim_state == OptimState.SCALED:
|
||||
self._unscale_grads()
|
||||
return super().clip_grad_norm(model, max_norm)
|
||||
|
||||
def step(self, *args, **kwargs):
|
||||
|
||||
self._prepare_grads()
|
||||
# unscale grads if scaled
|
||||
if not self.bf16 and self.optim_state == OptimState.SCALED:
|
||||
self._unscale_grads()
|
||||
|
||||
self._maybe_move_fp32_shards()
|
||||
if not self.bf16:
|
||||
found_inf = self._check_overflow()
|
||||
self.grad_scaler.update(found_inf)
|
||||
|
||||
if found_inf:
|
||||
self._logger.warning('found inf during ShardedOptimV2 step')
|
||||
self._zero_grad(recover_data=True)
|
||||
return
|
||||
|
||||
self._point_param_fp16_to_master_param()
|
||||
|
||||
if self._verbose:
|
||||
gpu_mem, cpu_mem = self.get_memory_usage()
|
||||
self._logger.debug(
|
||||
f"Before step ShardedOptimizerV2 consumes {gpu_mem / 1e6} MB CUDA Memory, {cpu_mem / 1e6} MB CUDA Memory!",
|
||||
ranks=[0])
|
||||
ret = self.optim.step(*args, **kwargs)
|
||||
|
||||
if self._verbose:
|
||||
gpu_mem, cpu_mem = self.get_memory_usage()
|
||||
self._logger.debug(
|
||||
f"After step ShardedOptimizerV2 consumes {gpu_mem / 1e6} MB CUDA Memory, {cpu_mem / 1e6} MB CUDA Memory!",
|
||||
ranks=[0])
|
||||
|
||||
self._copy_master_model_to_model_fp16()
|
||||
return ret
|
||||
|
||||
def _check_overflow(self):
|
||||
# clear previous overflow record
|
||||
self._found_overflow.fill_(self.model.overflow_counter)
|
||||
|
||||
# all-reduce across dp group
|
||||
dist.all_reduce(self._found_overflow, group=self.dp_process_group)
|
||||
|
||||
# all-reduce over model parallel group
|
||||
dist.all_reduce(self._found_overflow, group=self.mp_process_group)
|
||||
|
||||
return self._found_overflow.item() > 0
|
||||
|
||||
def _unscale_grads(self):
|
||||
assert self.optim_state == OptimState.SCALED
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is not None:
|
||||
p.grad.data.div_(self.loss_scale)
|
||||
self.optim_state = OptimState.UNSCALED
|
||||
|
||||
def _zero_grad(self, recover_data: bool = False):
|
||||
"""zero grad and maybe recover fp16 params
|
||||
When `reuse_fp16_shard` is enabled,
|
||||
p.colo_attr.sharded_data_tensor stores grad here.
|
||||
We have to recover them from fp32 params.
|
||||
|
||||
Args:
|
||||
recover_data (bool, optional): Whether to recover fp16 param from fp32 param. Defaults to False.
|
||||
"""
|
||||
# We must set grad to None
|
||||
# Because grad here is sharded
|
||||
# But next backward pass will create a full grad first
|
||||
# Which leads to wrong accumulation
|
||||
self.optim.zero_grad(set_to_none=True)
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
# p.colo_attr.sharded_data_tensor stores grad now
|
||||
# we have to recover fp16 param
|
||||
reuse_fp16_shard = (p.colo_attr.sharded_data_tensor.payload_size == 0)
|
||||
if recover_data and reuse_fp16_shard:
|
||||
self._copy_master_param_to_param_fp16(p)
|
||||
else:
|
||||
# release saved gradient
|
||||
p.colo_attr.saved_grad.set_null()
|
||||
self.model.overflow_counter = 0 # set overflow counter to zero
|
||||
|
||||
def sync_grad(self):
|
||||
pass
|
||||
|
||||
def _register_master_weight(self):
|
||||
self.master_params: Dict[Parameter, StatefulTensor] = {}
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
assert hasattr(p, 'colo_attr'), 'The parameter must be wrapped with ShardedParam'
|
||||
shard_flag = not p.colo_attr.sharded_data_tensor.is_sharded and p.colo_attr.is_replicated
|
||||
if shard_flag:
|
||||
# we always shard replicated parameters
|
||||
self.shard_strategy.shard([p.colo_attr.sharded_data_tensor], self.dp_process_group)
|
||||
self.master_params[p] = StatefulTensor(cast_tensor_to_fp32(p.colo_attr.data_payload.to(self.device)))
|
||||
if shard_flag:
|
||||
# In this branch, there's no need to shard param
|
||||
# So we gather here
|
||||
self.shard_strategy.gather([p.colo_attr.sharded_data_tensor], self.dp_process_group)
|
||||
|
||||
def _maybe_move_fp32_shards(self):
|
||||
if self._should_move_fp32_shards_h2d:
|
||||
self._should_move_fp32_shards_h2d = False
|
||||
available_cuda_margin_mem = self.model.cuda_margin_space * self.gpu_margin_mem_ratio
|
||||
fp32_shards_available_cuda_margin_mem = available_cuda_margin_mem / self.optim.num_fp32_shards_per_param
|
||||
fp32_shards_used_cuda_margin_mem = 0
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
if p.colo_attr.saved_grad.is_null():
|
||||
continue
|
||||
shard_mem = self.master_params[p].payload.numel() * self.master_params[p].payload.element_size()
|
||||
if fp32_shards_used_cuda_margin_mem + shard_mem < fp32_shards_available_cuda_margin_mem:
|
||||
colo_model_data_tensor_move_inline(self.master_params[p], torch.cuda.current_device())
|
||||
colo_model_data_tensor_move_inline(p.colo_attr.saved_grad, torch.cuda.current_device())
|
||||
p.colo_attr.offload_grad = False
|
||||
fp32_shards_used_cuda_margin_mem += shard_mem
|
||||
state = self.optim.state[p]
|
||||
for k, v in state.items():
|
||||
if isinstance(v, Tensor):
|
||||
state[k] = v.cuda()
|
||||
|
||||
def _prepare_grads(self):
|
||||
if self._grad_prepared:
|
||||
return
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
if p.colo_attr.saved_grad.is_null():
|
||||
continue
|
||||
p.colo_attr.saved_grad.trans_state(TensorState.COMPUTE)
|
||||
# If reuse_fp16_shard, grad fp16 which wasn't be offloaded may be evicted to CPU
|
||||
if not p.colo_attr.offload_grad:
|
||||
colo_model_data_tensor_move_inline(p.colo_attr.saved_grad, torch.cuda.current_device())
|
||||
# FIXME(ver217): p.data here is an empty tensor on CUDA and has no useful information
|
||||
# If we change p.grad directly
|
||||
# it may raise error because of different shape/dtype/device of p.data and p.grad
|
||||
# We just set p.data = p.colo_attr.saved_grad.payload here
|
||||
p.data = p.colo_attr.grad_payload
|
||||
p.grad = p.colo_attr.grad_payload
|
||||
# Set p.data to empty tensor, in case of memory leaking
|
||||
p.colo_attr.set_data_none()
|
||||
self._grad_prepared = True
|
||||
|
||||
def _point_param_fp16_to_master_param(self):
|
||||
# assign master param pointers to p.data.
|
||||
# We will not trigger data copy here.
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
self.master_params[p].trans_state(TensorState.COMPUTE)
|
||||
p.data = self.master_params[p].payload
|
||||
# Now p.data is sharded
|
||||
# So optimizer states are sharded naturally
|
||||
|
||||
def _copy_master_model_to_model_fp16(self):
|
||||
# Copy master param data (fp32) to payload of colo_attr (fp16)
|
||||
# TODO() improve efficiency by gathering tensors into a chunk and transferring
|
||||
# a chunk.
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
self._copy_master_param_to_param_fp16(p)
|
||||
|
||||
def _copy_master_param_to_param_fp16(self, p):
|
||||
# flush gradient
|
||||
if p.colo_attr.sharded_data_tensor.payload_size == 0:
|
||||
# here reuse_fp16_shard is True
|
||||
# in order to use copy below, we should give sharded data tensor a payload
|
||||
p.colo_attr.sharded_data_tensor.payload_relay(p.colo_attr.saved_grad)
|
||||
else:
|
||||
p.colo_attr.saved_grad.set_null()
|
||||
|
||||
p.data = self.master_params[p].payload
|
||||
|
||||
# we need to allocate new memory for keep_not_shard parameters
|
||||
# in order to use copy, otherwise, the sizes of tensor is not compatible
|
||||
if p.colo_attr.data_payload.numel() != p.data.numel():
|
||||
p.colo_attr.data_payload_reset(
|
||||
torch.empty(p.data.shape, dtype=p.colo_attr.data_payload.dtype, device=p.colo_attr.data_payload.device))
|
||||
|
||||
# TODO() optimize this line CPU (fp32) -> GPU (fp16)
|
||||
half_dtype = torch.bfloat16 if self.bf16 else torch.float16
|
||||
p.colo_attr.sharded_data_tensor.payload_copy(p.to(half_dtype).detach())
|
||||
p.colo_attr.set_data_none()
|
||||
|
||||
if p.colo_attr.keep_not_shard and p.colo_attr.is_replicated:
|
||||
# We gather full fp16 param here
|
||||
p.colo_attr.sharded_data_tensor.is_sharded = True # since only gradient is sharded, we should set to True
|
||||
self.shard_strategy.gather([p.colo_attr.sharded_data_tensor], self.dp_process_group)
|
||||
|
||||
self.master_params[p].trans_state(TensorState.HOLD)
|
||||
|
||||
def state_dict(self):
|
||||
optim_state_dict = super().state_dict()
|
||||
scaler_state_dict = self.grad_scaler.state_dict()
|
||||
optim_state_dict['scaler'] = scaler_state_dict
|
||||
return optim_state_dict
|
||||
|
||||
def load_state_dict(self, *args, **kwargs):
|
||||
if 'scaler' not in args[0]:
|
||||
self._logger.warning('Missing scaler when loading optimizer state dict', ranks=[0])
|
||||
else:
|
||||
scaler_state_dict = args[0].pop('scaler')
|
||||
self.grad_scaler.load_state_dict(scaler_state_dict)
|
||||
super().load_state_dict(*args, **kwargs)
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
state = self.optim.state[p]
|
||||
for k, v in state.items():
|
||||
if isinstance(v, Tensor):
|
||||
state[k] = v.to(dtype=self.master_params[p].dtype, device=self.master_params[p].device)
|
Reference in New Issue
Block a user