mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-06 01:26:15 +00:00
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692) * [legacy] remove cli of benchmark and update optim (#4690) * [legacy] remove cli of benchmark and update optim * [doc] fix cli doc test * [legacy] fix engine clip grad norm * [legacy] remove outdated colo tensor (#4694) * [legacy] remove outdated colo tensor * [test] fix test import * [legacy] move outdated zero to legacy (#4696) * [legacy] clean up utils (#4700) * [legacy] clean up utils * [example] update examples * [legacy] clean up amp * [legacy] fix amp module * [legacy] clean up gpc (#4742) * [legacy] clean up context * [legacy] clean core, constants and global vars * [legacy] refactor initialize * [example] fix examples ci * [example] fix examples ci * [legacy] fix tests * [example] fix gpt example * [example] fix examples ci * [devops] fix ci installation * [example] fix examples ci
This commit is contained in:
@@ -1,11 +1,13 @@
|
||||
from colossalai.context.parallel_context import ParallelContext
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.context import ParallelMode
|
||||
from .datasets.data_samplers import build_pretraining_data_loader
|
||||
from .datasets.builder import build_train_valid_test_datasets
|
||||
import torch
|
||||
|
||||
from colossalai.legacy.context import ParallelMode
|
||||
from colossalai.legacy.context.parallel_context import ParallelContext
|
||||
from colossalai.legacy.core import global_context as gpc
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
||||
from .datasets.builder import build_train_valid_test_datasets
|
||||
from .datasets.data_samplers import build_pretraining_data_loader
|
||||
|
||||
|
||||
def cyclic_iter(iter):
|
||||
while True:
|
||||
@@ -18,8 +20,7 @@ def build_train_valid_test_data_iterators(train_iters,
|
||||
eval_interval,
|
||||
eval_iters,
|
||||
dataloader_type='single',
|
||||
**kwargs
|
||||
):
|
||||
**kwargs):
|
||||
(train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)
|
||||
|
||||
logger = get_dist_logger()
|
||||
@@ -42,9 +43,7 @@ def build_train_valid_test_data_iterators(train_iters,
|
||||
train_samples = train_iters * global_batch_size
|
||||
eval_iters_ = (train_iters // eval_interval + 1) * eval_iters
|
||||
test_iters = eval_iters
|
||||
train_val_test_num_samples = [train_samples,
|
||||
eval_iters_ * global_batch_size,
|
||||
test_iters * global_batch_size]
|
||||
train_val_test_num_samples = [train_samples, eval_iters_ * global_batch_size, test_iters * global_batch_size]
|
||||
logger.info(' > datasets target sizes (minimum size):')
|
||||
logger.info(' train: {}'.format(train_val_test_num_samples[0]), ranks=[0])
|
||||
logger.info(' validation: {}'.format(train_val_test_num_samples[1]), ranks=[0])
|
||||
@@ -56,19 +55,20 @@ def build_train_valid_test_data_iterators(train_iters,
|
||||
|
||||
# Build dataloaders.
|
||||
dp_size = gpc.get_world_size(ParallelMode.DATA)
|
||||
train_dataloader = build_pretraining_data_loader(
|
||||
train_ds, consumed_samples=0, micro_batch_size=global_batch_size//dp_size)
|
||||
valid_dataloader = build_pretraining_data_loader(
|
||||
valid_ds, consumed_samples=0, micro_batch_size=global_batch_size//dp_size)
|
||||
test_dataloader = build_pretraining_data_loader(test_ds, 0, micro_batch_size=global_batch_size//dp_size)
|
||||
train_dataloader = build_pretraining_data_loader(train_ds,
|
||||
consumed_samples=0,
|
||||
micro_batch_size=global_batch_size // dp_size)
|
||||
valid_dataloader = build_pretraining_data_loader(valid_ds,
|
||||
consumed_samples=0,
|
||||
micro_batch_size=global_batch_size // dp_size)
|
||||
test_dataloader = build_pretraining_data_loader(test_ds, 0, micro_batch_size=global_batch_size // dp_size)
|
||||
|
||||
# Flags to know if we need to do training/validation/testing.
|
||||
do_train = train_dataloader is not None and train_iters > 0
|
||||
do_valid = valid_dataloader is not None and eval_iters > 0
|
||||
do_test = test_dataloader is not None and eval_iters > 0
|
||||
# Need to broadcast num_tokens and num_type_tokens.
|
||||
flags = torch.cuda.LongTensor(
|
||||
[int(do_train), int(do_valid), int(do_test)])
|
||||
flags = torch.cuda.LongTensor([int(do_train), int(do_valid), int(do_test)])
|
||||
else:
|
||||
flags = torch.cuda.LongTensor([0, 0, 0])
|
||||
|
||||
|
Reference in New Issue
Block a user