mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 21:09:18 +00:00
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692) * [legacy] remove cli of benchmark and update optim (#4690) * [legacy] remove cli of benchmark and update optim * [doc] fix cli doc test * [legacy] fix engine clip grad norm * [legacy] remove outdated colo tensor (#4694) * [legacy] remove outdated colo tensor * [test] fix test import * [legacy] move outdated zero to legacy (#4696) * [legacy] clean up utils (#4700) * [legacy] clean up utils * [example] update examples * [legacy] clean up amp * [legacy] fix amp module * [legacy] clean up gpc (#4742) * [legacy] clean up context * [legacy] clean core, constants and global vars * [legacy] refactor initialize * [example] fix examples ci * [example] fix examples ci * [legacy] fix tests * [example] fix gpt example * [example] fix examples ci * [devops] fix ci installation * [example] fix examples ci
This commit is contained in:
@@ -1,15 +1,17 @@
|
||||
import colossalai
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .pooler import Pooler
|
||||
from .linear import Linear
|
||||
from .embedding import VocabEmbedding
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.kernel import LayerNorm
|
||||
from loss_func.cross_entropy import vocab_cross_entropy
|
||||
|
||||
import colossalai
|
||||
from colossalai.kernel import LayerNorm
|
||||
from colossalai.legacy.context import ParallelMode
|
||||
from colossalai.legacy.core import global_context as gpc
|
||||
|
||||
from .embedding import VocabEmbedding
|
||||
from .linear import Linear
|
||||
from .pooler import Pooler
|
||||
|
||||
|
||||
class BertLMHead(nn.Module):
|
||||
"""Masked LM head for Bert
|
||||
@@ -19,10 +21,11 @@ class BertLMHead(nn.Module):
|
||||
layernorm_epsilon: tolerance for layer norm divisions
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
vocab_size,
|
||||
hidden_size,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size,
|
||||
hidden_size,
|
||||
):
|
||||
|
||||
super(BertLMHead, self).__init__()
|
||||
self.bias = torch.nn.Parameter(torch.zeros(vocab_size))
|
||||
|
@@ -1,7 +1,8 @@
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
from colossalai.legacy.context.parallel_mode import ParallelMode
|
||||
from colossalai.legacy.core import global_context as gpc
|
||||
|
||||
|
||||
class PreProcessor(nn.Module):
|
||||
@@ -14,8 +15,8 @@ class PreProcessor(nn.Module):
|
||||
# Create position ids
|
||||
seq_length = token_ids.size(1)
|
||||
local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE)
|
||||
position_ids = torch.arange(seq_length*local_rank,
|
||||
seq_length * (local_rank+1),
|
||||
position_ids = torch.arange(seq_length * local_rank,
|
||||
seq_length * (local_rank + 1),
|
||||
dtype=torch.long,
|
||||
device=token_ids.device)
|
||||
position_ids = position_ids.unsqueeze(0).expand_as(token_ids)
|
||||
|
Reference in New Issue
Block a user