mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-23 10:30:03 +00:00
[CI] fix some spelling errors (#3707)
* fix spelling error with examples/comminity/ * fix spelling error with tests/ * fix some spelling error with tests/ colossalai/ etc.
This commit is contained in:
@@ -28,7 +28,7 @@ def get_training_components():
|
||||
print('building AlbertForSequenceClassification model')
|
||||
|
||||
# adapting huggingface BertForSequenceClassification for single unitest calling interface
|
||||
class ModelAaptor(AlbertForSequenceClassification):
|
||||
class ModelAdaptor(AlbertForSequenceClassification):
|
||||
|
||||
def forward(self, input_ids, labels):
|
||||
"""
|
||||
@@ -37,23 +37,23 @@ def get_training_components():
|
||||
"""
|
||||
return super().forward(input_ids=input_ids, labels=labels)[0]
|
||||
|
||||
model = ModelAaptor(config)
|
||||
model = ModelAdaptor(config)
|
||||
# if checkpoint and version.parse(transformers.__version__) >= version.parse("4.11.0"):
|
||||
# model.gradient_checkpointing_enable()
|
||||
|
||||
return model
|
||||
|
||||
is_distrbuted = torch.distributed.is_initialized()
|
||||
is_distributed = torch.distributed.is_initialized()
|
||||
trainloader = get_bert_data_loader(n_class=vocab_size,
|
||||
batch_size=2,
|
||||
total_samples=10000,
|
||||
sequence_length=sequence_length,
|
||||
is_distrbuted=is_distrbuted)
|
||||
is_distributed=is_distributed)
|
||||
testloader = get_bert_data_loader(n_class=vocab_size,
|
||||
batch_size=2,
|
||||
total_samples=10000,
|
||||
sequence_length=sequence_length,
|
||||
is_distrbuted=is_distrbuted)
|
||||
is_distributed=is_distributed)
|
||||
|
||||
criterion = None
|
||||
return bert_model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
||||
|
@@ -27,7 +27,7 @@ class DummyDataLoader(DummyDataGenerator):
|
||||
@non_distributed_component_funcs.register(name='beit')
|
||||
def get_training_components():
|
||||
|
||||
def model_buider(checkpoint=False):
|
||||
def model_builder(checkpoint=False):
|
||||
model = Beit(img_size=DummyDataLoader.img_size,
|
||||
num_classes=DummyDataLoader.num_class,
|
||||
embed_dim=32,
|
||||
@@ -39,4 +39,4 @@ def get_training_components():
|
||||
testloader = DummyDataLoader()
|
||||
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
return model_buider, trainloader, testloader, torch.optim.Adam, criterion
|
||||
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
||||
|
@@ -13,7 +13,7 @@ def get_bert_data_loader(
|
||||
total_samples,
|
||||
sequence_length,
|
||||
device=torch.device('cpu:0'),
|
||||
is_distrbuted=False,
|
||||
is_distributed=False,
|
||||
):
|
||||
train_data = torch.randint(
|
||||
low=0,
|
||||
@@ -24,7 +24,7 @@ def get_bert_data_loader(
|
||||
)
|
||||
train_label = torch.randint(low=0, high=2, size=(total_samples,), device=device, dtype=torch.long)
|
||||
train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
|
||||
if is_distrbuted:
|
||||
if is_distributed:
|
||||
sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
|
||||
else:
|
||||
sampler = SequentialSampler(train_dataset)
|
||||
@@ -52,8 +52,8 @@ def get_training_components():
|
||||
attention_probs_dropout_prob=0.)
|
||||
print('building BertForSequenceClassification model')
|
||||
|
||||
# adapting huggingface BertForSequenceClassification for single unitest calling interface
|
||||
class ModelAaptor(BertForSequenceClassification):
|
||||
# adapting huggingface BertForSequenceClassification for single unittest calling interface
|
||||
class ModelAdaptor(BertForSequenceClassification):
|
||||
|
||||
def forward(self, input_ids, labels):
|
||||
"""
|
||||
@@ -62,23 +62,23 @@ def get_training_components():
|
||||
"""
|
||||
return super().forward(input_ids=input_ids, labels=labels)[0]
|
||||
|
||||
model = ModelAaptor(config)
|
||||
model = ModelAdaptor(config)
|
||||
if checkpoint and version.parse(transformers.__version__) >= version.parse("4.11.0"):
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
return model
|
||||
|
||||
is_distrbuted = torch.distributed.is_initialized()
|
||||
is_distributed = torch.distributed.is_initialized()
|
||||
trainloader = get_bert_data_loader(n_class=vocab_size,
|
||||
batch_size=2,
|
||||
total_samples=10000,
|
||||
sequence_length=sequence_length,
|
||||
is_distrbuted=is_distrbuted)
|
||||
is_distributed=is_distributed)
|
||||
testloader = get_bert_data_loader(n_class=vocab_size,
|
||||
batch_size=2,
|
||||
total_samples=10000,
|
||||
sequence_length=sequence_length,
|
||||
is_distrbuted=is_distrbuted)
|
||||
is_distributed=is_distributed)
|
||||
|
||||
criterion = None
|
||||
return bert_model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
||||
|
@@ -9,10 +9,10 @@ class Registry:
|
||||
def register(self, name):
|
||||
assert name not in self._registry
|
||||
|
||||
def _regsiter(callable_):
|
||||
def _register(callable_):
|
||||
self._registry[name] = callable_
|
||||
|
||||
return _regsiter
|
||||
return _register
|
||||
|
||||
def get_callable(self, name: str):
|
||||
return self._registry[name]
|
||||
@@ -34,6 +34,6 @@ class Registry:
|
||||
|
||||
|
||||
non_distributed_component_funcs = Registry()
|
||||
model_paralle_component_funcs = Registry()
|
||||
model_parallel_component_funcs = Registry()
|
||||
|
||||
__all__ = ['non_distributed_component_funcs', 'model_paralle_component_funcs']
|
||||
__all__ = ['non_distributed_component_funcs', 'model_parallel_component_funcs']
|
||||
|
Reference in New Issue
Block a user