mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[CI] fix some spelling errors (#3707)
* fix spelling error with examples/comminity/ * fix spelling error with tests/ * fix some spelling error with tests/ colossalai/ etc.
This commit is contained in:
@@ -51,7 +51,7 @@ def test_activation_checkpointing(cpu_offload, use_reentrant):
|
||||
# other tests might affect this test
|
||||
reset_seeds()
|
||||
|
||||
# We put initilization here to avoid change cuda rng state below
|
||||
# We put initialization here to avoid change cuda rng state below
|
||||
inputs = torch.rand(2, 2, requires_grad=True, device='cuda')
|
||||
weight = torch.rand(2, 4, requires_grad=True, device='cuda')
|
||||
|
||||
|
@@ -23,7 +23,7 @@ def check_model_state_dict(a: Dict[str, Tensor], b: Dict[str, Tensor]) -> None:
|
||||
assert torch.equal(v, b[k])
|
||||
|
||||
|
||||
def check_optim_state_dict(a: dict, b: dict, ignore_param_gruops: bool = False) -> None:
|
||||
def check_optim_state_dict(a: dict, b: dict, ignore_param_groups: bool = False) -> None:
|
||||
assert set(a['state'].keys()) == set(b['state'].keys())
|
||||
for k, state in a['state'].items():
|
||||
b_state = b['state'][k]
|
||||
@@ -32,7 +32,7 @@ def check_optim_state_dict(a: dict, b: dict, ignore_param_gruops: bool = False)
|
||||
assert torch.equal(v1, v2)
|
||||
else:
|
||||
assert v1 == v2
|
||||
if not ignore_param_gruops:
|
||||
if not ignore_param_groups:
|
||||
assert a['param_groups'] == b['param_groups']
|
||||
|
||||
|
||||
@@ -129,23 +129,23 @@ def launch_dist(fn, world_size: int):
|
||||
|
||||
|
||||
def save_dist(dir_name: str, zero: bool):
|
||||
model, optmizer = prepare_model_optim(shard=True, zero=zero)
|
||||
reset_model_optim(model, optmizer)
|
||||
model, optimizer = prepare_model_optim(shard=True, zero=zero)
|
||||
reset_model_optim(model, optimizer)
|
||||
world_size = dist.get_world_size()
|
||||
rank = dist.get_rank()
|
||||
save(dir_name, model, optmizer, dist_meta=get_dist_metas(world_size, zero)[rank])
|
||||
save(dir_name, model, optimizer, dist_meta=get_dist_metas(world_size, zero)[rank])
|
||||
|
||||
|
||||
def load_and_check_dist(dir_name: str):
|
||||
world_size = dist.get_world_size()
|
||||
model, optmizer = prepare_model_optim(shard=True)
|
||||
reset_model_optim(model, optmizer)
|
||||
model, optimizer = prepare_model_optim(shard=True)
|
||||
reset_model_optim(model, optimizer)
|
||||
model_state_dict = deepcopy(model.state_dict())
|
||||
optimizer_state_dict = deepcopy(optmizer.state_dict())
|
||||
reset_model_optim(model, optmizer, 1)
|
||||
load(dir_name, model, optmizer, get_redist_meta(world_size), get_dist_metas(world_size))
|
||||
optimizer_state_dict = deepcopy(optimizer.state_dict())
|
||||
reset_model_optim(model, optimizer, 1)
|
||||
load(dir_name, model, optimizer, get_redist_meta(world_size), get_dist_metas(world_size))
|
||||
check_model_state_dict(model_state_dict, model.state_dict())
|
||||
check_optim_state_dict(optimizer_state_dict, optmizer.state_dict())
|
||||
check_optim_state_dict(optimizer_state_dict, optimizer.state_dict())
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
@@ -68,7 +68,7 @@ def run_dist(rank, world_size, port, test_fn):
|
||||
|
||||
|
||||
def run_save_dist(dir_name: str, zero: bool):
|
||||
model, optmizer = prepare_model_optim(shard=True, zero=zero)
|
||||
model, optimizer = prepare_model_optim(shard=True, zero=zero)
|
||||
rank = dist.get_rank()
|
||||
dp_world_size = dist.get_world_size() // 2
|
||||
if not zero:
|
||||
@@ -90,7 +90,7 @@ def run_save_dist(dir_name: str, zero: bool):
|
||||
'fc.bias':
|
||||
ParamDistMeta(rank // 2, dp_world_size, 0, 1, zero_numel=1, zero_orig_shape=[1])
|
||||
}
|
||||
save(dir_name, model, optmizer, dist_meta=dist_metas)
|
||||
save(dir_name, model, optimizer, dist_meta=dist_metas)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
@@ -125,9 +125,9 @@ def run_dist(rank, world_size, port, test_fn):
|
||||
|
||||
|
||||
def run_save_dist(dir_name: str, zero: bool):
|
||||
model, optmizer = prepare_model_optim(shard=True, zero=zero)
|
||||
model, optimizer = prepare_model_optim(shard=True, zero=zero)
|
||||
rank = dist.get_rank()
|
||||
save(dir_name, model, optmizer, dist_meta=get_dist_metas(4, zero)[rank])
|
||||
save(dir_name, model, optimizer, dist_meta=get_dist_metas(4, zero)[rank])
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
@@ -28,7 +28,7 @@ def check_model_state_dict(a: Dict[str, Tensor], b: Dict[str, Tensor]) -> None:
|
||||
assert torch.equal(v, b[k])
|
||||
|
||||
|
||||
def check_optim_state_dict(a: dict, b: dict, ignore_param_gruops: bool = False) -> None:
|
||||
def check_optim_state_dict(a: dict, b: dict, ignore_param_groups: bool = False) -> None:
|
||||
assert set(a['state'].keys()) == set(b['state'].keys())
|
||||
for k, state in a['state'].items():
|
||||
b_state = b['state'][k]
|
||||
@@ -37,7 +37,7 @@ def check_optim_state_dict(a: dict, b: dict, ignore_param_gruops: bool = False)
|
||||
assert torch.equal(v1, v2)
|
||||
else:
|
||||
assert v1 == v2
|
||||
if not ignore_param_gruops:
|
||||
if not ignore_param_groups:
|
||||
assert a['param_groups'] == b['param_groups']
|
||||
|
||||
|
||||
@@ -113,12 +113,12 @@ def run_dist(rank, world_size, port, test_fn):
|
||||
|
||||
|
||||
def run_save_dist(dir_name):
|
||||
model, optmizer = prepare_model_optim()
|
||||
model, optimizer = prepare_model_optim()
|
||||
dist_metas = {
|
||||
'fc.weight': ParamDistMeta(dist.get_rank(), dist.get_world_size(), 0, 1),
|
||||
'fc.bias': ParamDistMeta(dist.get_rank(), dist.get_world_size(), 0, 1)
|
||||
}
|
||||
save(dir_name, model, optmizer, dist_meta=dist_metas)
|
||||
save(dir_name, model, optimizer, dist_meta=dist_metas)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
@@ -18,7 +18,7 @@ def set_seed(seed: int) -> None:
|
||||
torch.manual_seed(seed)
|
||||
|
||||
|
||||
def assert_model_eqaual(m1: torch.nn.Module, m2: torch.nn.Module) -> None:
|
||||
def assert_model_equal(m1: torch.nn.Module, m2: torch.nn.Module) -> None:
|
||||
s1 = m1.state_dict()
|
||||
s2 = m2.state_dict()
|
||||
|
||||
@@ -63,7 +63,7 @@ def check_lazy_init(entry: TestingEntry, seed: int = 42, verbose: bool = False,
|
||||
with ctx:
|
||||
deferred_model = model_fn()
|
||||
deferred_model = ctx.materialize(deferred_model, verbose=verbose)
|
||||
assert_model_eqaual(model, deferred_model)
|
||||
assert_model_equal(model, deferred_model)
|
||||
if check_forward:
|
||||
assert_forward_equal(model, deferred_model, data_gen_fn, output_transform_fn)
|
||||
if verbose:
|
||||
|
Reference in New Issue
Block a user